Processor Thermal/Mechanical Information
22
Thermal and Mechanical Design Guidelines
Passive heatsink
solutions require in-depth knowledge of the airflow in the chassis.
Typically, passive heatsinks see lower air speed. These heatsinks are therefore
typically larger (and heavier) than active heatsinks due to the increase in fin surface
required to meet a required performance. As the heatsink fin density (the number of
fins in a given cross-section) increases, the resistance to the airflow increases: it is
more likely that the air travels around the heatsink instead of through it, unless air
bypass is carefully managed. Using air-ducting techniques to manage bypass area can
be an effective method for controlling airflow through the heatsink.
2.3.1
Heatsink Size
The size of the heatsink is dictated by height restrictions for installation in a system
and by the real estate available on the motherboard and other considerations for
component height and placement in the area potentially impacted by the processor
heatsink. The height of the heatsink must comply with the requirements and
recommendations published for the motherboard form factor of interest. Designing a
heatsink to the recommendations may preclude using it in system adhering strictly to
the form factor requirements, while still in compliance with the form factor
documentation.
For the ATX/microATX form factor, it is recommended to use:
The ATX motherboard keep-out footprint definition and height restrictions for
enabling components, defined for the platforms designed with the LGA775 socket
in
Appendix G of this design guide.
The motherboard primary side height constraints defined in the
ATX Specification
V2.1
and the
microATX Motherboard Interface Specification V1.1
found at
The resulting space available above the motherboard is generally not entirely available
for the heatsink. The target height of the heatsink must take into account airflow
considerations (for fan performance for example) as well as other design
considerations (air duct, etc.).
For BTX form factor, it is recommended to use:
The BTX motherboard keep-out footprint definitions and height restrictions for
enabling components for platforms designed with the LGA77 socket in
of this design guide.
An overview of other BTX system considerations for thermal solutions can be
obtained in the latest version of the
Balanced Technology Extended (BTX) System
Design Guide
Heatsink Mass
With the need to push air cooling to better performance, heatsink solutions tend to
grow larger (increase in fin surface) resulting in increased mass. The insertion of
highly thermally conductive materials like copper to increase heatsink thermal
conduction performance results in even heavier solutions. As mentioned in
Section
2.1, the heatsink mass must take into consideration the package and socket
load limits, the heatsink attach mechanical capabilities, and the mechanical shock and
vibration profile targets. Beyond a certain heatsink mass, the cost of developing and
Summary of Contents for BX80570E8200 - Core 2 Duo 2.66 GHz Processor
Page 10: ...10 Thermal and Mechanical Design Guidelines...
Page 26: ...Processor Thermal Mechanical Information 26 Thermal and Mechanical Design Guidelines...
Page 82: ...Heatsink Clip Load Metrology 82 Thermal and Mechanical Design Guidelines...
Page 84: ...Thermal Interface Management 84 Thermal and Mechanical Design Guidelines...
Page 110: ...Fan Performance for Reference Design 110 Thermal and Mechanical Design Guidelines...