![Freescale Semiconductor MC9S12ZVM series Скачать руководство пользователя страница 324](http://html1.mh-extra.com/html/freescale-semiconductor/mc9s12zvm-series/mc9s12zvm-series_reference-manual_2330602324.webp)
Chapter 9 Analog-to-Digital Converter (ADC12B_LBA_V1)
MC9S12ZVM Family Reference Manual Rev. 1.3
324
Freescale Semiconductor
9.4.2.6
ADC Conversion Flow Control Register (ADCFLWCTL)
Bit set and bit clear instructions should not be used to access this register.
When the ADC is enabled the bits of ADCFLWCTL register can be modified after a latency time of three
Bus Clock cycles.
All bits are cleared if bit ADC_EN is clear or via ADC soft-reset.
Read: Anytime
Write:
•
Bits SEQA, TRIG, RSTA, LDOK can only be set if bit ADC_EN is set.
•
Writing 1’b0 to any of these bits does not have an effect
Timing considerations (Trigger Event - channel sample start) depending on ADC mode configuration:
•
Restart Mode
When the Restart Event has been processed (initial command of current CSL is loaded) it takes two
Bus Clock cycles plus two ADC conversion clock cycles (pump phase) from the Trigger Event (bit
TRIG set) until the select channel starts to sample.
During a conversion sequence (back to back conversions) it takes five Bus Clock cycles plus two
ADC conversion clock cycles (pump phase) from current conversion period end until the newly
selected channel is sampled in the following conversion period.
•
Trigger Mode
When a Restart Event occurs a Trigger Event is issued simultaneously. The time required to process
the Restart Event is mainly defined by the internal read data bus availability and therefore can vary.
In this mode the Trigger Event is processed immediately after the Restart Event is finished and both
conversion flow control bits are cleared simultaneously. From de-assert of bit TRIG until sampling
begins five Bus Clock cycles are required. Hence from occurrence of a Restart Event until channel
sampling it takes five Bus Clock cycles plus an uncertainty of a few Bus Clock cycles.
For more details regarding the sample phase please refer to
Section 9.5.2.2, “Sample and Hold Machine
.
Module Base + 0x0005
7
6
5
4
3
2
1
0
R
SEQA
TRIG
RSTA
LDOK
0
0
0
0
W
Reset
0
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 9-9. ADC Conversion Flow Control Register (ADCFLWCTL)
Содержание MC9S12ZVM series
Страница 116: ...Chapter 2 Port Integration Module S12ZVMPIMV1 MC9S12ZVM Family Reference Manual Rev 1 3 116 Freescale Semiconductor ...
Страница 242: ...Chapter 7 ECC Generation Module SRAM_ECCV1 MC9S12ZVM Family Reference Manual Rev 1 3 242 Freescale Semiconductor ...
Страница 384: ...Chapter 10 Supply Voltage Sensor BATSV3 MC9S12ZVM Family Reference Manual Rev 1 3 384 Freescale Semiconductor ...
Страница 484: ...Chapter 13 Programmable Trigger Unit PTUV2 MC9S12ZVM Family Reference Manual Rev 1 3 484 Freescale Semiconductor ...
Страница 662: ...Chapter 17 Gate Drive Unit GDUV4 MC9S12ZVM Family Reference Manual Rev 1 3 662 Freescale Semiconductor ...
Страница 684: ...Chapter 18 LIN Physical Layer S12LINPHYV2 MC9S12ZVM Family Reference Manual Rev 1 3 684 Freescale Semiconductor ...
Страница 740: ...Chapter 19 128 KB Flash Module S12ZFTMRZ128K512V2 MC9S12ZVM Family Reference Manual Rev 1 3 740 Freescale Semiconductor ...
Страница 756: ...Appendix A MCU Electrical Specifications MC9S12ZVM Family Reference Manual Rev 1 3 756 Freescale Semiconductor ...
Страница 772: ...Appendix D LINPHY Electrical Specifications MC9S12ZVM Family Reference Manual Rev 1 3 772 Freescale Semiconductor ...
Страница 776: ...Appendix E GDU Electrical Specifications MC9S12ZVM Family Reference Manual Rev 1 3 776 Freescale Semiconductor ...
Страница 788: ...Appendix I MSCAN Electrical Specifications MC9S12ZVM Family Reference Manual Rev 1 3 788 Freescale Semiconductor ...
Страница 790: ...Appendix J Package Information MC9S12ZVM Family Reference Manual Rev 1 3 790 Freescale Semiconductor ...