ARM INSTRUCTION SET
SC32442B RISC MICROPROCESSOR
3-36
HALFWORD LOAD AND STORES
Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM920T register and memory.
The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.
Signed byte and halfword loads
The S bit controls the loading of sign-extended data. When S=1 the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected.
The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.
The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.
The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.
Endianness and byte/halfword selection
Little-Endian Configuration
A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2.
A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM920T will
load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register. For
unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH) the top 16 bits are filled with the sign bit, bit 15 of the halfword.
A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.
Summary of Contents for SC32442B54
Page 1: ...SC32442B54 USER S MANUAL Revision 1 0 ...
Page 43: ...PRODUCT OVERVIEW SC32442B RISC MICROPROCESSOR 1 42 NOTES ...
Page 59: ...PROGRAMMER S MODEL SC32442B RISC MICROPROCESSOR 2 16 NOTES ...
Page 123: ...ARM INSTRUCTION SET SC32442B RISC MICROPROCESSOR 3 64 NOTES ...
Page 167: ...THUMB INSTRUCTION SET SC32442B RISC MICROPROCESSOR 4 44 NOTES ...
Page 187: ...MEMORY CONTROLLER SC32442B RISC MICROPROCESSOR 5 20 NOTES ...
Page 250: ...DMA SC32442B RISC MICROPROCESSOR 8 14 NOTES ...
Page 308: ...PWM TIMER SC32442B RISC MICROPROCESSOR 10 20 NOTES ...
Page 330: ...UART SC32442B RISC MICROPROCESSOR 11 22 NOTES ...
Page 417: ...SC32442B RISC MICROPROCESSOR LCD CONTROLLER 15 45 NOTES ...
Page 427: ...ADC AND TOUCH SCREEN INTERFACE SC32442B RISC MICROPROCESSOR 16 10 NOTES ...
Page 511: ...BUS PRIORITIES SC32442B RISC MICROPROCESSOR 24 2 NOTES ...
Page 562: ...K5D2G13ACM D075 Revision 1 0 December 2006 7 MCP MEMORY 2Gb 256Mb x8 NAND Flash Memory A Die ...
Page 599: ...K5D2G13ACM D075 Revision 1 0 December 2006 44 MCP MEMORY 512Mb 16Mb x32 Mobile SDRAM C Die ...