background image

 

36-Mbit (1M x 36/2M x 18/512K x 72)

Flow-Through SRAM

CY7C1441AV33

CY7C1443AV33,CY7C1447AV33

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document #: 38-05357 Rev. *G

 Revised May 09, 2008

Features

Supports 133-MHz bus operations

1M x 36/2M x 18/512K x 72 common IO

3.3V core power supply 

2.5V or 3.3V IO power supply 

Fast clock-to-output times

6.5 ns (133-MHz version)

Provide high-performance 2-1-1-1 access rate

User-selectable burst counter supporting Intel

®

 Pentium

®

 

interleaved or linear burst sequences

Separate processor and controller address strobes 

Synchronous self-timed write

Asynchronous output enable

CY7C1441AV33, CY7C1443AV33 available in 
JEDEC-standard Pb-free 100-pin TQFP package, Pb-free and 
non-lead-free 165-ball FBGA package. CY7C1447AV33 
available in Pb-free and non-lead-free 209-ball FBGA package

IEEE 1149.1 JTAG-Compatible Boundary Scan

“ZZ” Sleep Mode option

Functional Description

The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33

[1]

 are

3.3V, 1M x 36/2M x 18/512K x 72 Synchronous Flow-through
SRAMs, respectively designed to interface with high-speed
microprocessors with minimum glue logic. Maximum access
delay from clock rise is 6.5 ns (133-MHz version). A 2-bit on-chip
counter captures the first address in a burst and increments the
address automatically for the rest of the burst access. All
synchronous inputs are gated by registers controlled by a
positive-edge-triggered Clock Input (CLK). The synchronous
inputs include all addresses, all data inputs, address-pipelining
Chip Enable (CE

1

), depth-expansion Chip Enables (CE

2

 and

CE

3

), Burst Control inputs (ADSC, ADSP, and ADV), Write

Enables (BW

x

, and BWE), and Global Write (GW).

Asynchronous inputs include the Output Enable (OE) and the ZZ
pin.

The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 allows
either interleaved or linear burst sequences, selected by the
MODE input pin. A HIGH selects an interleaved burst sequence,
while a LOW selects a linear burst sequence. Burst accesses
can be initiated with the Processor Address Strobe (ADSP) or the
cache Controller Address Strobe (ADSC) inputs. Address
advancement is controlled by the Address Advancement (ADV)
input.

Addresses and chip enables are registered at rising edge of
clock when either Address Strobe Processor (ADSP) or Address
Strobe Controller (ADSC) are active. Subsequent burst
addresses can be internally generated as controlled by the
Advance pin (ADV).

The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 
operates from a +3.3V core power supply while all outputs may 
operate with either a +2.5 or +3.3V supply. All inputs and outputs 
are JEDEC-standard JESD8-5-compatible.

Selection Guide

Description

133 MHz

100 MHz

Unit

Maximum Access Time

6.5

8.5

ns

Maximum Operating Current

310

290

mA

Maximum CMOS Standby Current

120

120

mA

Note

1. For best-practices recommendations, please refer to the Cypress application note 

System Design Guidelines 

on www.cypress.com.

[+] Feedback 

Summary of Contents for CY7C1441AV33

Page 1: ...ll synchronous inputs are gated by registers controlled by a positive edge triggered Clock Input CLK The synchronous inputs include all addresses all data inputs address pipelining Chip Enable CE1 depth expansion Chip Enables CE2 and CE3 Burst Control inputs ADSC ADSP and ADV Write Enables BWx and BWE and Global Write GW Asynchronous inputs include the Output Enable OE and the ZZ pin The CY7C1441A...

Page 2: ...P CONTROL DQA DQPA BYTE WRITE REGISTER DQB DQP B BYTE WRITE REGISTER DQC DQP C BYTE WRITE REGISTER BYTE WRITE REGISTER DQD DQP D BYTE WRITE REGISTER DQD DQP D BYTE WRITE REGISTER DQC DQP C BYTE WRITE REGISTER DQB DQP B BYTE WRITE REGISTER DQA DQP A BYTE WRITE REGISTER ADDRESS REGISTER ADV CLK BURST COUNTER AND LOGIC CLR Q1 Q0 ADSC CE1 OE SENSE AMPS MEMORY ARRAY ADSP OUTPUT BUFFERS INPUT REGISTERS ...

Page 3: ...A DQPA WRITE DRIVER DQB DQPB WRITE DRIVER DQC DQPC WRITE DRIVER DQD DQPD WRITE DRIVER BYTE a WRITE DRIVER DQE DQPE WRITE DRIVER DQF DQPF WRITE DRIVER DQG DQPG WRITE DRIVER DQH DQPH WRITE DRIVER MEMORY ARRAY SENSE AMPS SLEEP CONTROL ZZ INPUT REGISTERS DQs DQP A DQP B DQP C DQP D DQP E DQP F DQP G DQP H DQA DQPA WRITE REGISTER DQB DQPB WRITE REGISTER DQC DQPC WRITE REGISTER DQD DQPD WRITE REGISTER D...

Page 4: ...7 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 MODE CY7C1441AV33 1Mx 36 NC A A A A A 1 A 0 NC 72M A V SS V DD A A A A A A A A A NC NC VDDQ VSSQ NC DQPA DQA DQA VSSQ VDDQ DQA DQA VSS NC VDD ZZ DQA DQA VDDQ VSSQ DQA DQA NC NC VSSQ VDDQ NC NC NC NC NC NC VDDQ VSSQ NC NC DQB DQB VSSQ VDDQ DQB DQB VDD NC VSS D...

Page 5: ...B DQB DQB NC DQB NC DQA DQA VDD VDDQ VDD VDDQ DQB VDD NC VDD DQA VDD VDDQ DQA VDDQ VDD VDD VDDQ VDD VDDQ DQA VDDQ A A VSS A A A DQB DQB DQB ZZ DQA DQA DQPA DQA A VDDQ A CY7C1443AV33 2M x 18 A0 A VSS 2 3 4 5 6 7 1 A B C D E F G H J K L M N P R TDO NC 288M NC 144M NC NC DQPB NC DQB A CE1 NC CE3 BWB BWE A CE2 NC DQB DQB MODE NC DQB DQB NC NC NC A NC 72M VDDQ NC BWA CLK GW VSS VSS VSS VSS VDDQ VSS VDD...

Page 6: ... NC DQA DQA DQA DQA DQPE DQE DQE DQE DQE A ADSP ADV A NC NC NC 72M A A A A A A A A A A1 A0 A A A A A A NC 144M NC288M NC 576M GW NC NC BWSB BWSF BWSE BWSA BWSC BWSG BWSD BWSH TMS TDI TDO TCK NC NC MODE NC VSS VSS NC CLK NC VSS VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VSS VSS VSS VSS VSS VSS VSS VSS NC 1G VDD NC OE CE3 CE1 CE2 ADSC BW VSS VSS VSS VSS VSS VSS VSS ZZ VSS VSS VSS VSS NC VDD...

Page 7: ...E1 and CE2 to select deselect the device CE3 is assumed active throughout this document for BGA CE3 is sampled only when a new external address is loaded OE Input Asynchronous Output Enable Asynchronous Input Active LOW Controls the direction of the IO pins When LOW the IO pins behave as outputs When deasserted HIGH IO pins are tri stated and act as input data pins OE is masked during the first cl...

Page 8: ...DDQ IO Power Supply Power Supply for the IO Circuitry VSS Ground Ground for the Core of the Device VSSQ IO Ground Ground for the IO Circuitry TDO JTAG serial output Synchronous Serial Data Out to the JTAG Circuit Delivers data on the negative edge of TCK If the JTAG feature is not being utilized this pin should be left uncon nected This pin is not available on TQFP packages TDI JTAG serial input S...

Page 9: ...e next clock rise the appropriate data is latched and written into the device Byte writes are allowed All IOs are tri stated during a byte write Since this is a common IO device the asynchronous OE input signal must be deasserted and the IOs must be tri stated prior to the presentation of data to DQs As a safety precaution the data lines are tri stated once a write cycle is detected regardless of ...

Page 10: ...tinue Burst Next X X X L H H L H H L H Tri State Read Cycle Continue Burst Next H X X L X H L H L L H Q Read Cycle Continue Burst Next H X X L X H L H H L H Tri State Write Cycle Continue Burst Next X X X L H H L L X L H D Write Cycle Continue Burst Next H X X L X H L L X L H D Read Cycle Suspend Burst Current X X X L H H H H L L H Q Read Cycle Suspend Burst Current X X X L H H H H H L H Tri State...

Page 11: ... Bytes D B A DQD DQC DQA DQPD DQPC DQPA H L L L H L Write Bytes D C A DQD DQB DQA DQPD DQPB DQPA H L L L L H Write All Bytes H L L L L L Write All Bytes L X X X X X Truth Table for Read Write Function CY7C1443AV33 2 GW BWE BWB BWA Read H H X X Read H L H H Write Byte A DQA and DQPA H L H L Write Byte B DQB and DQPB H L L H Write All Bytes H L L L Write All Bytes L X X X Truth Table for Read Write ...

Page 12: ...he registers The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register TDI is internally pulled up and can be unconnected if the TAP is unused in an appli cation TDI is connected to the most significant bit MSB of any register See Tap Controller Block Diagram Test Data Out TDO The TDO output ball is used to serially clock data out from the regis...

Page 13: ...is shifted in the TAP controller must be moved into the Update IR state IDCODE The IDCODE instruction loads a vendor specific 32 bit code into the instruction register It also places the instruction register between the TDI and TDO balls and shifts the IDCODE out of the device when the TAP controller enters the Shift DR state The IDCODE instruction is loaded into the instruction register upon powe...

Page 14: ...ns when the EXTEST is entered as the current instruction When HIGH it enables the output buffers to drive the output bus When LOW this bit places the output bus into a High Z condition This bit can be set by entering the SAMPLE PRELOAD or EXTEST command and then shifting the desired bit into that cell during the Shift DR state During Update DR the value loaded into that shift register cell latches...

Page 15: ...lock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns Setup Times tTMSS TMS Setup to TCK Clock Rise 5 ns tTDIS TDI Setup to TCK Clock Rise 5 ns tCS Capture Setup to TCK Rise 5 ns Hold Times tTMSH TMS Hold after TCK Clock Rise 5 ns tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Notes 9 tCS and tCH refer to the setup and hold time requirements of latching d...

Page 16: ...C Output Load Equivalent TDO 1 25V 20pF Z 50Ω O 50Ω TAP DC Electrical Characteristics And Operating Conditions 0 C TA 70 C VDD 3 135V to 3 6V unless otherwise noted 11 Parameter Description Description Conditions Min Max Unit VOH1 Output HIGH Voltage IOH 4 0 mA VDDQ 3 3V 2 4 V IOH 1 0 mA VDDQ 2 5V 2 0 V VOH2 Output HIGH Voltage IOH 100 µA VDDQ 3 3V 2 9 V VDDQ 2 5V 2 1 V VOL1 Output LOW Voltage IOL...

Page 17: ...y Scan Order 165 ball FBGA package 89 89 Boundary Scan Order 209 ball FBGA package 138 Identification Codes Instruction Code Description EXTEST 000 Captures IO ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This operation does not affect SRAM operations SAMPLE Z 010 Captures IO ring contents Places the boundary scan register betwe...

Page 18: ...2 6 R8 31 D10 56 A1 81 P3 7 R9 32 C11 57 C1 82 R3 8 P9 33 A11 58 D1 83 P2 9 P10 34 B11 59 E1 84 R4 10 R10 35 A10 60 F1 85 P4 11 R11 36 B10 61 G1 86 N5 12 H11 37 A9 62 D2 87 P6 13 N11 38 B9 63 E2 88 R6 14 M11 39 C10 64 F2 89 Internal 15 L11 40 A8 65 G2 16 K11 41 B8 66 H1 17 J11 42 A7 67 H3 18 M10 43 B7 68 J1 19 L10 44 B6 69 K1 20 K10 45 A6 70 L1 21 J10 46 B5 71 M1 22 H9 47 A5 72 J2 23 H10 48 A4 73 ...

Page 19: ...mA 0 4 V for 2 5V IO IOL 1 0 mA 0 4 V VIH Input HIGH Voltage 15 for 3 3V IO 2 0 VDD 0 3V V for 2 5V IO 1 7 VDD 0 3V V VIL Input LOW Voltage 15 for 3 3V IO 0 3 0 8 V for 2 5V IO 0 3 0 7 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 μA Input Current of MODE Input VSS 30 μA Input VDD 5 μA Input Current of ZZ Input VSS 5 μA Input VDD 30 μA IOZ Output Leakage Current GND VI VDDQ Output ...

Page 20: ...unction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 25 21 20 8 25 31 C W ΘJC Thermal Resistance Junction to Case 2 28 3 2 4 48 C W Figure 2 AC Test Loads and Waveforms OUTPUT R 317Ω R 351Ω 5 pF INCLUDING JIG AND SCOPE a b OUTPUT RL 50Ω Z0 50Ω VT 1 5V 3 3V ALL INPUT PULSES VDDQ GND 90 10 90 10 1 ns 1 ns c OUTPUT R 1667Ω R 153...

Page 21: ...0 5 ns tADH ADSP ADSC Hold After CLK Rise 0 5 0 5 ns tWEH GW BWE BWX Hold After CLK Rise 0 5 0 5 ns tADVH ADV Hold After CLK Rise 0 5 0 5 ns tDH Data Input Hold After CLK Rise 0 5 0 5 ns tCEH Chip Enable Hold After CLK Rise 0 5 0 5 ns Notes 18 This part has a voltage regulator internally tPOWER is the time that the power must be supplied above VDD minimum initially before a read or write operation...

Page 22: ...CDV tOEHZ tCDV Single READ BURST READ tOEV tOELZ tCHZ Burst wraps around to its initial state t ADVH t ADVS t WEH t WES tADH tADS Q A2 Q A2 1 Q A2 2 Q A1 Q A2 Q A2 1 Q A2 2 Q A2 3 A2 ADV suspends burst Deselect Cycle DON T CARE UNDEFINED ADSP ADSC GW BWE BW X CE ADV OE Note 24 On this diagram when CE is LOW CE1 is LOW CE2 is HIGH and CE3 is LOW When CE is HIGH CE1 is HIGH or CE2 is LOW or CE3 is H...

Page 23: ...A2 1 D A1 D A3 D A3 1 D A3 2 D A2 3 A2 A3 Extended BURST WRITE D A2 2 Single WRITE tADH tADS tADH tADS t OEHZ tADVH tADVS tWEH tWES t DH t DS t WEH t WES Byte write signals are ignored for first cycle when ADSP initiates burst ADSC extends burst ADV suspends burst DON T CARE UNDEFINED ADSP ADSC BWE BW X GW CE ADV OE Data in D Data Out Q Note 25 Full width write can be initiated by either GW LOW or...

Page 24: ...tCEH tCES Single WRITE D A3 A3 A4 BURST READ Back to Back READs High Z Q A2 Q A4 Q A4 1 Q A4 2 Q A4 3 t WEH t WES t OEHZ tDH tDS tCDV tOELZ A1 A5 A6 D A5 D A6 Q A1 Back to Back WRITEs DON T CARE UNDEFINED ADSP ADSC BWE BWX CE ADV OE Data In D Data Out Q Note 26 The data bus Q remains in high Z following a WRITE cycle unless a new read access is initiated by ADSP or ADSC 27 GW is HIGH Feedback ...

Page 25: ...continued tZZ I SUPPLY CLK ZZ tZZREC ALL INPUTS except ZZ DON T CARE I DDZZ tZZI tRZZI Outputs Q High Z DESELECT or READ Only Note 28 Device must be deselected when entering ZZ mode See Cycle Descriptions table for all possible signal conditions to deselect the device 29 DQs are in high Z when exiting ZZ sleep mode Feedback ...

Page 26: ...33 133BZXI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb free CY7C1443AV33 133BZXI CY7C1447AV33 133BGI 51 85167 209 ball Fine Pitch Ball Grid Array 14 x 22 x 1 76 mm CY7C1447AV33 133BGXI 209 ball Fine Pitch Ball Grid Array 14 x 22 x 1 76 mm Pb free 100 CY7C1441AV33 100AXC 51 85050 100 Pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Pb free Commercial CY7C1443AV33 100AXC CY7C1441AV33 10...

Page 27: ... FLASH SHALL NOT EXCEED 0 0098 in 0 25 mm PER SIDE 3 DIMENSIONS IN MILLIMETERS BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 0 30 0 08 0 65 20 00 0 10 22 00 0 20 1 40 0 05 12 1 1 60 MAX 0 05 MIN 0 60 0 15 0 MIN 0 25 0 7 8X STAND OFF R 0 08 MIN TYP 0 20 MAX 0 15 MAX 0 20 MAX R 0 08 MIN 0 20 MAX 14 00 0 10 16 00 0 20 0 10 SEE DETAIL A DETAIL A 1 100 30 31 50 51 80 81 GAUGE...

Page 28: ...ed A 1 PIN 1 CORNER 17 00 0 10 15 00 0 10 7 00 1 00 Ø0 45 0 05 165X Ø0 25 M C A B Ø0 05 M C B A 0 15 4X 0 35 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L J H G F E D C B A C 1 00 5 00 0 36 0 05 0 10 51 85165 A Feedback ...

Page 29: ...CY7C1441AV33 CY7C1443AV33 CY7C1447AV33 Document 38 05357 Rev G Page 29 of 31 Figure 3 209 ball FBGA 14 x 22 x1 76 mm 51 85167 Package Diagrams continued 51 85167 Feedback ...

Page 30: ...lead free information for 100 pin TQFP 165 FBGA and 209 BGA Packages Added comment of Lead free BG and BZ packages availability below the Ordering Information C 320813 See ECN SYT Changed H9 pin from VSSQ to VSS on the Pin Configuration table for 209 FBGA Changed the test condition from VDD Min to VDD Max for VOL in the Electrical Characteristics table Replaced the TBD s for IDD ISB1 ISB2 ISB3 and...

Page 31: ...ohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any liabilit...

Reviews: