Hitachi 353
2.
Receive data is shifted into the RSR in order from the LSB to the MSB.
3.
The parity bit and stop bit are received. After receiving these bits, the SCI makes the
following checks:
a.
Parity check: the number of 1s in the receive data must match the even or odd parity
setting of the O/E bit in the SMR.
b.
Stop bit check: the stop bit value must be 1. If there are two stop bits, only the first stop
bit is checked.
c.
Status check: RDRF must be 0 so that receive data can be loaded from the RSR into the
RDR.
If these checks all pass, the SCI sets RDRF to 1 and stores the received data in the RDR. If
one of the checks fails (receive error), the SCI operates as indicated in table 13.11.
Note:
When a receive error flag is set, further receiving is disabled. The RDRF bit is not set
to 1. Be sure to clear the error flags.
4.
After setting RDRF to 1, if the receive-data-full interrupt enable bit (RIE) is set to 1 in the
SCR, the SCI requests a receive-data-full interrupt (RXI). If one of the error flags (ORER,
PER, or FER) is set to 1 and the receive-data-full interrupt enable bit (RIE) in the SCR is also
set to 1, the SCI requests a receive-error interrupt (ERI).
Figure 13.8 shows an example of SCI receive operation in the asynchronous mode.
Table 13.12 Receive Error Conditions and SCI Operation
Receive Error
Abbreviation
Condition
Data Transfer
Overrun error
ORER
Receiving of next data ends while
RDRF is still set to 1 in SSR
Receive data not loaded
from RSR into RDR
Framing error
FER
Stop bit is 0
Receive data loaded from
RSR into RDR
Parity error
PER
Parity of receive data differs from
even/odd parity setting in SMR
Receive data loaded from
RSR into RDR
Summary of Contents for SH7095
Page 1: ...SH7095 Hardware User Manual ...
Page 23: ...12 Hitachi ...
Page 63: ...52 Hitachi ...
Page 77: ...66 Hitachi ...
Page 105: ...94 Hitachi Figure 5 14 Pipeline Operation when Interrupts are Enabled by Changing the SR ...
Page 127: ...116 Hitachi ...
Page 152: ...Hitachi 141 Figure 7 8 Example of 32 Bit Data Width SRAM Connection ...
Page 157: ...146 Hitachi Figure 7 13 Synchronous DRAM 32 bit Device Connection ...
Page 161: ...150 Hitachi Figure 7 15 Basic Burst Read Timing Auto Precharge ...
Page 167: ...156 Hitachi Figure 7 20 Burst Read Timing Bank Active Same Row Address ...
Page 168: ...Hitachi 157 Figure 7 21 Burst Read Timing Bank Active Different Row Addresses ...
Page 169: ...158 Hitachi Figure 7 22 Write Timing No Precharge ...
Page 170: ...Hitachi 159 Figure 7 23 Write Timing Bank Active Same Row Address ...
Page 180: ...Hitachi 169 Figure 7 29 Example of a DRAM Connection 32 Bit Data Width ...
Page 190: ...Hitachi 179 Figure 7 36 Example of Pseudo SRAM Connection 1 M pseudo SRAM ...
Page 191: ...180 Hitachi Figure 7 37 Example of Pseudo SRAM Connection 4 M pseudo SRAM ...
Page 209: ...198 Hitachi Figure 7 50 Master and Partial Share Master Connections ...
Page 231: ...220 Hitachi ...
Page 287: ...276 Hitachi ...
Page 307: ...296 Hitachi Note For a CPU writing H AA55 to FRC Figure 11 2 FRC Access Operation Write ...
Page 308: ...Hitachi 297 Note For an FRC reading from a CPU H AA55 Figure 11 3 FRC Access Operation Read ...
Page 333: ...322 Hitachi ...
Page 370: ...Hitachi 359 Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data ...
Page 371: ...360 Hitachi Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data cont ...
Page 395: ...384 Hitachi ...
Page 402: ...Hitachi 391 Figure 15 6 PLL Synchronization Settling Timing ...
Page 408: ...Hitachi 397 Figure 15 13 Bus Release Timing Slave Mode With PLL1 Off ...
Page 436: ...Hitachi 425 Figure 15 33 Synchronous DRAM Mode Register Write Cycle TRP 1 Cycle ...
Page 437: ...426 Hitachi Figure 15 34 Synchronous DRAM Mode Register Write Cycle TRP 2 Cycles ...
Page 449: ...438 Hitachi Figure 15 46 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL On ...
Page 454: ...Hitachi 443 Figure 15 51 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL Off ...
Page 461: ...450 Hitachi Figure 15 58 Pseudo SRAM Auto Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 462: ...Hitachi 451 Figure 15 59 Pseudo SRAM Self Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 467: ...456 Hitachi Figure 15 64 Pseudo SRAM Auto Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 468: ...Hitachi 457 Figure 15 65 Pseudo SRAM Self Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 471: ...460 Hitachi Figure 15 68 Interrupt Vector Fetch Cycle PLL On No Waits ...
Page 472: ...Hitachi 461 Figure 15 69 Interrupt Vector Fetch Cycle PLL Off No Waits ...
Page 473: ...462 Hitachi Figure 15 70 Interrupt Vector Fetch Cycle 1 External Wait Cycle ...
Page 474: ...Hitachi 463 Figure 15 71 Address Monitor Cycle ...
Page 490: ...Hitachi 479 B 2 Register Chart ...