206 Hitachi
Table 8.2
Address Space and Cache Operation
Addresses
A31–A29
Partial Space
Cache Operation
000
Cache area
Cache is used when the CE bit of the CCR is 1.
001
Cache-through area
No cache is used.
010
Associative purge area
Cache line of the specified address is purged
(disabled).
011
Address array read/write area Cache address array is accessed directly.
110
Data array read/write area
Cache data array is accessed directly.
111
I/O area
No cache is used.
8.4
Cache Operation
8.4.1
Cache Reads
This section describes cache operation when the cache is enabled and data is read from the CPU.
One of the 64 entries is selected by the entry address part of the address output from the CPU on
the cache address bus. The tag addresses of ways 0 through 3 are compared to the tag address parts
of the addresses output from the CPU. A match to the tag address of a way is called a cache hit. In
proper use, the tag addresses of each way differ from each other, but and the tag address of only
one way will match. When none of the way tag addresses match, it is called a cache miss. Tag
addresses of entries with valid bits of 0 will not match in any case.
When a cache hit occurs, data is read from the data array of the way that was matched according to
the entry address, the byte address within the line, and the access data size. The data is then sent to
the CPU. The address output on the cache address bus is calculated in the CPU’s instruction
execution phase and the results of the read are written during the CPU’s write back stage. The
cache address bus and cache data bus both operate as pipelines in concert with the CPU’s pipeline
structure. From address comparison to data read requires 1 cycle; since the address and data
operate as a pipeline, consecutive reads can be performed at each cycle with no waits.
Summary of Contents for SH7095
Page 1: ...SH7095 Hardware User Manual ...
Page 23: ...12 Hitachi ...
Page 63: ...52 Hitachi ...
Page 77: ...66 Hitachi ...
Page 105: ...94 Hitachi Figure 5 14 Pipeline Operation when Interrupts are Enabled by Changing the SR ...
Page 127: ...116 Hitachi ...
Page 152: ...Hitachi 141 Figure 7 8 Example of 32 Bit Data Width SRAM Connection ...
Page 157: ...146 Hitachi Figure 7 13 Synchronous DRAM 32 bit Device Connection ...
Page 161: ...150 Hitachi Figure 7 15 Basic Burst Read Timing Auto Precharge ...
Page 167: ...156 Hitachi Figure 7 20 Burst Read Timing Bank Active Same Row Address ...
Page 168: ...Hitachi 157 Figure 7 21 Burst Read Timing Bank Active Different Row Addresses ...
Page 169: ...158 Hitachi Figure 7 22 Write Timing No Precharge ...
Page 170: ...Hitachi 159 Figure 7 23 Write Timing Bank Active Same Row Address ...
Page 180: ...Hitachi 169 Figure 7 29 Example of a DRAM Connection 32 Bit Data Width ...
Page 190: ...Hitachi 179 Figure 7 36 Example of Pseudo SRAM Connection 1 M pseudo SRAM ...
Page 191: ...180 Hitachi Figure 7 37 Example of Pseudo SRAM Connection 4 M pseudo SRAM ...
Page 209: ...198 Hitachi Figure 7 50 Master and Partial Share Master Connections ...
Page 231: ...220 Hitachi ...
Page 287: ...276 Hitachi ...
Page 307: ...296 Hitachi Note For a CPU writing H AA55 to FRC Figure 11 2 FRC Access Operation Write ...
Page 308: ...Hitachi 297 Note For an FRC reading from a CPU H AA55 Figure 11 3 FRC Access Operation Read ...
Page 333: ...322 Hitachi ...
Page 370: ...Hitachi 359 Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data ...
Page 371: ...360 Hitachi Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data cont ...
Page 395: ...384 Hitachi ...
Page 402: ...Hitachi 391 Figure 15 6 PLL Synchronization Settling Timing ...
Page 408: ...Hitachi 397 Figure 15 13 Bus Release Timing Slave Mode With PLL1 Off ...
Page 436: ...Hitachi 425 Figure 15 33 Synchronous DRAM Mode Register Write Cycle TRP 1 Cycle ...
Page 437: ...426 Hitachi Figure 15 34 Synchronous DRAM Mode Register Write Cycle TRP 2 Cycles ...
Page 449: ...438 Hitachi Figure 15 46 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL On ...
Page 454: ...Hitachi 443 Figure 15 51 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL Off ...
Page 461: ...450 Hitachi Figure 15 58 Pseudo SRAM Auto Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 462: ...Hitachi 451 Figure 15 59 Pseudo SRAM Self Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 467: ...456 Hitachi Figure 15 64 Pseudo SRAM Auto Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 468: ...Hitachi 457 Figure 15 65 Pseudo SRAM Self Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 471: ...460 Hitachi Figure 15 68 Interrupt Vector Fetch Cycle PLL On No Waits ...
Page 472: ...Hitachi 461 Figure 15 69 Interrupt Vector Fetch Cycle PLL Off No Waits ...
Page 473: ...462 Hitachi Figure 15 70 Interrupt Vector Fetch Cycle 1 External Wait Cycle ...
Page 474: ...Hitachi 463 Figure 15 71 Address Monitor Cycle ...
Page 490: ...Hitachi 479 B 2 Register Chart ...