372 Hitachi
Simultaneous Multiple Receive Errors: Table 13.14 indicates the state of the SSR status flags
when multiple receive errors occur simultaneously. When an overrun error occurs, the RSR
contents cannot be transferred to the RDR, so receive data is lost.
Table 13.14 SSR Status Flags and Transfer of Receive Data
SSR Status Flags
Receive Data
Transfer
Receive Error Status
RDRF
ORER
FER
PER
RSR
RDR
Overrun error
1
1
0
0
X
Framing error
0
0
1
0
O
Parity error
0
0
0
1
O
Overrun error + framing error
1
1
1
0
X
Overrun error + parity error
1
1
0
1
X
Framing error + parity error
0
0
1
1
O
Overrun error + framing error + parity
error
1
1
1
1
X
O: Receive data is transferred from RSR–RDR.
X: Receive data is not transferred from RSR–RDR.
Break Detection and Processing: Break signals can be detected by reading the RxD pin directly
when a framing error (FER) is detected. In the break state, the input from the RxD pin consists of
all 0s, so FER is set and the parity error flag (PER) may also be set. In the break state, the SCI
receiver continues to operate, so if the FER bit is cleared to 0, it will be set to 1 again.
Sending a Break Signal: When TE is cleared to 0, a 1 is output from the TxD pin.
Receive Error Flags and Transmitter Operation (clocked synchronous mode only): When a
receive error flag (ORER, PER, or FER) is set to 1, the SCI will not start transmitting even if
TDRE is set to 1. Be sure to clear the receive error flags to 0 before starting to transmit. Note that
clearing RE to 0 does not clear the receive error flags.
Receive Data Sampling Timing and Receive Margin in the Asynchronous Mode: In the
asynchronous mode, the SCI operates on a base clock of 16 times the bit rate frequency. In
receiving, the SCI synchronizes internally with the falling edge of the start bit, which it samples on
the base clock. Receive data is latched on the rising edge of the eighth base clock pulse. See figure
13.21.
Summary of Contents for SH7095
Page 1: ...SH7095 Hardware User Manual ...
Page 23: ...12 Hitachi ...
Page 63: ...52 Hitachi ...
Page 77: ...66 Hitachi ...
Page 105: ...94 Hitachi Figure 5 14 Pipeline Operation when Interrupts are Enabled by Changing the SR ...
Page 127: ...116 Hitachi ...
Page 152: ...Hitachi 141 Figure 7 8 Example of 32 Bit Data Width SRAM Connection ...
Page 157: ...146 Hitachi Figure 7 13 Synchronous DRAM 32 bit Device Connection ...
Page 161: ...150 Hitachi Figure 7 15 Basic Burst Read Timing Auto Precharge ...
Page 167: ...156 Hitachi Figure 7 20 Burst Read Timing Bank Active Same Row Address ...
Page 168: ...Hitachi 157 Figure 7 21 Burst Read Timing Bank Active Different Row Addresses ...
Page 169: ...158 Hitachi Figure 7 22 Write Timing No Precharge ...
Page 170: ...Hitachi 159 Figure 7 23 Write Timing Bank Active Same Row Address ...
Page 180: ...Hitachi 169 Figure 7 29 Example of a DRAM Connection 32 Bit Data Width ...
Page 190: ...Hitachi 179 Figure 7 36 Example of Pseudo SRAM Connection 1 M pseudo SRAM ...
Page 191: ...180 Hitachi Figure 7 37 Example of Pseudo SRAM Connection 4 M pseudo SRAM ...
Page 209: ...198 Hitachi Figure 7 50 Master and Partial Share Master Connections ...
Page 231: ...220 Hitachi ...
Page 287: ...276 Hitachi ...
Page 307: ...296 Hitachi Note For a CPU writing H AA55 to FRC Figure 11 2 FRC Access Operation Write ...
Page 308: ...Hitachi 297 Note For an FRC reading from a CPU H AA55 Figure 11 3 FRC Access Operation Read ...
Page 333: ...322 Hitachi ...
Page 370: ...Hitachi 359 Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data ...
Page 371: ...360 Hitachi Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data cont ...
Page 395: ...384 Hitachi ...
Page 402: ...Hitachi 391 Figure 15 6 PLL Synchronization Settling Timing ...
Page 408: ...Hitachi 397 Figure 15 13 Bus Release Timing Slave Mode With PLL1 Off ...
Page 436: ...Hitachi 425 Figure 15 33 Synchronous DRAM Mode Register Write Cycle TRP 1 Cycle ...
Page 437: ...426 Hitachi Figure 15 34 Synchronous DRAM Mode Register Write Cycle TRP 2 Cycles ...
Page 449: ...438 Hitachi Figure 15 46 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL On ...
Page 454: ...Hitachi 443 Figure 15 51 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL Off ...
Page 461: ...450 Hitachi Figure 15 58 Pseudo SRAM Auto Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 462: ...Hitachi 451 Figure 15 59 Pseudo SRAM Self Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 467: ...456 Hitachi Figure 15 64 Pseudo SRAM Auto Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 468: ...Hitachi 457 Figure 15 65 Pseudo SRAM Self Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 471: ...460 Hitachi Figure 15 68 Interrupt Vector Fetch Cycle PLL On No Waits ...
Page 472: ...Hitachi 461 Figure 15 69 Interrupt Vector Fetch Cycle PLL Off No Waits ...
Page 473: ...462 Hitachi Figure 15 70 Interrupt Vector Fetch Cycle 1 External Wait Cycle ...
Page 474: ...Hitachi 463 Figure 15 71 Address Monitor Cycle ...
Page 490: ...Hitachi 479 B 2 Register Chart ...