Hitachi 323
Section 13 Serial Communication Interface
13.1
Overview
The SH7095 has a serial communication interface (SCI) that supports both asynchronous and
clocked synchronous serial communication. It also has a multiprocessor communication function
for serial communication among two or more processors.
13.1.1
Features
Select asynchronous or clock synchronous as the serial communications mode.
•
Asynchronous mode:
— Serial data communications are synchronized by start-stop in character units. The SCI
can communicate with a universal asynchronous receiver/transmitter (UART), an
asynchronous communication interface adapter (ACIA), or any other chip that employs a
standard asynchronous serial communication. It can also communicate with two or more
other processors using the multiprocessor communication function. There are twelve
selectable serial data communication formats.
— Data length: seven or eight bits
— Stop bit length: one or two bits
— Parity: even, odd, or none
— Multiprocessor bit: one or none
— Receive error detection: parity, overrun, and framing errors
— Break detection: by reading the RxD level directly when a framing error occurs
•
Clocked synchronous mode:
— Serial data communication is synchronized with a clock signal. The SCI can
communicate with other chips having a clocked synchronous communication function.
There is one serial data communication format.
— Data length: eight bits
— Receive error detection: overrun errors
•
Full duplex communication. The transmitting and receiving sections are independent, so the
SCI can transmit and receive simultaneously. Both sections use double buffering, so
continuous data transfer is possible in both the transmit and receive directions.
•
On-chip baud rate generator with selectable bit rates
•
Internal or external transmit/receive clock source. Baud rate generator (internal) or SCK pin
(external)
•
Four types of interrupts. Transmit-data-empty, transmit-end, receive-data-full, and receive-
error interrupts are requested independently. The transmit-data-empty and receive-data-full
interrupts can start the direct memory access controller (DMAC) to transfer data.
Summary of Contents for SH7095
Page 1: ...SH7095 Hardware User Manual ...
Page 23: ...12 Hitachi ...
Page 63: ...52 Hitachi ...
Page 77: ...66 Hitachi ...
Page 105: ...94 Hitachi Figure 5 14 Pipeline Operation when Interrupts are Enabled by Changing the SR ...
Page 127: ...116 Hitachi ...
Page 152: ...Hitachi 141 Figure 7 8 Example of 32 Bit Data Width SRAM Connection ...
Page 157: ...146 Hitachi Figure 7 13 Synchronous DRAM 32 bit Device Connection ...
Page 161: ...150 Hitachi Figure 7 15 Basic Burst Read Timing Auto Precharge ...
Page 167: ...156 Hitachi Figure 7 20 Burst Read Timing Bank Active Same Row Address ...
Page 168: ...Hitachi 157 Figure 7 21 Burst Read Timing Bank Active Different Row Addresses ...
Page 169: ...158 Hitachi Figure 7 22 Write Timing No Precharge ...
Page 170: ...Hitachi 159 Figure 7 23 Write Timing Bank Active Same Row Address ...
Page 180: ...Hitachi 169 Figure 7 29 Example of a DRAM Connection 32 Bit Data Width ...
Page 190: ...Hitachi 179 Figure 7 36 Example of Pseudo SRAM Connection 1 M pseudo SRAM ...
Page 191: ...180 Hitachi Figure 7 37 Example of Pseudo SRAM Connection 4 M pseudo SRAM ...
Page 209: ...198 Hitachi Figure 7 50 Master and Partial Share Master Connections ...
Page 231: ...220 Hitachi ...
Page 287: ...276 Hitachi ...
Page 307: ...296 Hitachi Note For a CPU writing H AA55 to FRC Figure 11 2 FRC Access Operation Write ...
Page 308: ...Hitachi 297 Note For an FRC reading from a CPU H AA55 Figure 11 3 FRC Access Operation Read ...
Page 333: ...322 Hitachi ...
Page 370: ...Hitachi 359 Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data ...
Page 371: ...360 Hitachi Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data cont ...
Page 395: ...384 Hitachi ...
Page 402: ...Hitachi 391 Figure 15 6 PLL Synchronization Settling Timing ...
Page 408: ...Hitachi 397 Figure 15 13 Bus Release Timing Slave Mode With PLL1 Off ...
Page 436: ...Hitachi 425 Figure 15 33 Synchronous DRAM Mode Register Write Cycle TRP 1 Cycle ...
Page 437: ...426 Hitachi Figure 15 34 Synchronous DRAM Mode Register Write Cycle TRP 2 Cycles ...
Page 449: ...438 Hitachi Figure 15 46 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL On ...
Page 454: ...Hitachi 443 Figure 15 51 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL Off ...
Page 461: ...450 Hitachi Figure 15 58 Pseudo SRAM Auto Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 462: ...Hitachi 451 Figure 15 59 Pseudo SRAM Self Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 467: ...456 Hitachi Figure 15 64 Pseudo SRAM Auto Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 468: ...Hitachi 457 Figure 15 65 Pseudo SRAM Self Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 471: ...460 Hitachi Figure 15 68 Interrupt Vector Fetch Cycle PLL On No Waits ...
Page 472: ...Hitachi 461 Figure 15 69 Interrupt Vector Fetch Cycle PLL Off No Waits ...
Page 473: ...462 Hitachi Figure 15 70 Interrupt Vector Fetch Cycle 1 External Wait Cycle ...
Page 474: ...Hitachi 463 Figure 15 71 Address Monitor Cycle ...
Page 490: ...Hitachi 479 B 2 Register Chart ...