54 Hitachi
4.1.2
Exception Processing Operations
The exception processing sources are detected and begin processing according to the timing
shown in table 4.2.
Table 4.2
Timing of Exception Source Detection and the Start of Exception Processing
Exception Processing
Timing of Source Detection and Start of Processing
Reset
Power-on reset
Starts when the NMI pin is high and the
RES
pin changes from
low to high.
Manual reset
Starts when the NMI pin is low and the
RES
pin changes from
low to high.
Address error
Detected when instruction is decoded and starts when the
previous executing instruction finishes executing.
Interrupts
Detected when instruction is decoded and starts when the
previous executing instruction finishes executing.
Instructions
Trap instruction
Starts from the execution of a TRAPA instruction.
General illegal
instructions
Starts from the decoding of undefined code anytime except after
a delay branch instruction (delay slot).
Illegal slot
instructions
Starts from the decoding of undefined code placed directly
following a delay branch instruction (delay slot) or of instructions
that rewrite the PC.
When exception processing starts, the CPU operates as follows:
1.
Exception processing triggered by reset
The initial values of the program counter (PC) and stack pointer (SP) are fetched from the
exception processing vector table (PC and SP are respectively the H'00000000 and
H'00000004 addresses for power-on resets and the H'00000008 and H'0000000C addresses
for manual resets). See section 4.1.3, Exception Processing Vector Table, for more
information. 0 is then written to the vector base register (VBR) and 1111 is written to the
interrupt mask bits (I3–I0) of the status register. The program begins running from the PC
address fetched from the exception processing vector table.
2.
Exception processing triggered by address errors, interrupts, and instructions
SR and PC are saved to the stack address indicated by R15. For interrupt exception
processing, the interrupt priority level is written to the SR’s interrupt mask bits (I3–I0). For
address error and instruction exception processing, the I3–I0 bits are not affected. The start
address is then fetched from the exception processing vector table and the program begins
running from that address.
Summary of Contents for SH7095
Page 1: ...SH7095 Hardware User Manual ...
Page 23: ...12 Hitachi ...
Page 63: ...52 Hitachi ...
Page 77: ...66 Hitachi ...
Page 105: ...94 Hitachi Figure 5 14 Pipeline Operation when Interrupts are Enabled by Changing the SR ...
Page 127: ...116 Hitachi ...
Page 152: ...Hitachi 141 Figure 7 8 Example of 32 Bit Data Width SRAM Connection ...
Page 157: ...146 Hitachi Figure 7 13 Synchronous DRAM 32 bit Device Connection ...
Page 161: ...150 Hitachi Figure 7 15 Basic Burst Read Timing Auto Precharge ...
Page 167: ...156 Hitachi Figure 7 20 Burst Read Timing Bank Active Same Row Address ...
Page 168: ...Hitachi 157 Figure 7 21 Burst Read Timing Bank Active Different Row Addresses ...
Page 169: ...158 Hitachi Figure 7 22 Write Timing No Precharge ...
Page 170: ...Hitachi 159 Figure 7 23 Write Timing Bank Active Same Row Address ...
Page 180: ...Hitachi 169 Figure 7 29 Example of a DRAM Connection 32 Bit Data Width ...
Page 190: ...Hitachi 179 Figure 7 36 Example of Pseudo SRAM Connection 1 M pseudo SRAM ...
Page 191: ...180 Hitachi Figure 7 37 Example of Pseudo SRAM Connection 4 M pseudo SRAM ...
Page 209: ...198 Hitachi Figure 7 50 Master and Partial Share Master Connections ...
Page 231: ...220 Hitachi ...
Page 287: ...276 Hitachi ...
Page 307: ...296 Hitachi Note For a CPU writing H AA55 to FRC Figure 11 2 FRC Access Operation Write ...
Page 308: ...Hitachi 297 Note For an FRC reading from a CPU H AA55 Figure 11 3 FRC Access Operation Read ...
Page 333: ...322 Hitachi ...
Page 370: ...Hitachi 359 Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data ...
Page 371: ...360 Hitachi Figure 13 12 Sample Flowchart for Receiving Multiprocessor Serial Data cont ...
Page 395: ...384 Hitachi ...
Page 402: ...Hitachi 391 Figure 15 6 PLL Synchronization Settling Timing ...
Page 408: ...Hitachi 397 Figure 15 13 Bus Release Timing Slave Mode With PLL1 Off ...
Page 436: ...Hitachi 425 Figure 15 33 Synchronous DRAM Mode Register Write Cycle TRP 1 Cycle ...
Page 437: ...426 Hitachi Figure 15 34 Synchronous DRAM Mode Register Write Cycle TRP 2 Cycles ...
Page 449: ...438 Hitachi Figure 15 46 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL On ...
Page 454: ...Hitachi 443 Figure 15 51 DRAM CAS Before RAS Refresh Cycle TRP 1 Cycle TRAS 2 Cycles PLL Off ...
Page 461: ...450 Hitachi Figure 15 58 Pseudo SRAM Auto Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 462: ...Hitachi 451 Figure 15 59 Pseudo SRAM Self Refresh Cycle PLL On TRP 1 Cycle TRAS 2 Cycles ...
Page 467: ...456 Hitachi Figure 15 64 Pseudo SRAM Auto Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 468: ...Hitachi 457 Figure 15 65 Pseudo SRAM Self Refresh Cycle PLL Off TRP 1 Cycle TRAS 2 Cycles ...
Page 471: ...460 Hitachi Figure 15 68 Interrupt Vector Fetch Cycle PLL On No Waits ...
Page 472: ...Hitachi 461 Figure 15 69 Interrupt Vector Fetch Cycle PLL Off No Waits ...
Page 473: ...462 Hitachi Figure 15 70 Interrupt Vector Fetch Cycle 1 External Wait Cycle ...
Page 474: ...Hitachi 463 Figure 15 71 Address Monitor Cycle ...
Page 490: ...Hitachi 479 B 2 Register Chart ...