Because any switch in an STP network with a lower priority can become the root bridge, the forwarding
topology may not be stable. The location of the root bridge can change, resulting in unpredictable network
behavior. The STP root guard feature ensures that the position of the root bridge does not change.
Root Guard Scenario
For example, as shown in the following illustration (STP topology 1, upper left) Switch A is the root bridge in
the network core. Switch C functions as an access switch connected to an external device. The link between
Switch C and Switch B is in a Blocking state. The flow of STP BPDUs is shown in the illustration.
In STP topology 2 (shown in the upper right), STP is enabled on device D on which a software bridge
application is started to connect to the network. Because the priority of the bridge in device D is lower than
the root bridge in Switch A, device D is elected as root, causing the link between Switches A and B to enter a
Blocking state. Network traffic then begins to flow in the directions indicated by the BPDU arrows in the
topology. If the links between Switches C and A or Switches C and B cannot handle the increased traffic flow,
frames may be dropped.
In STP topology 3 (shown in the lower middle), if you have enabled the root guard feature on the STP port on
Switch C that connects to device D, and device D sends a superior BPDU that would trigger the election of
device D as the new root bridge, the BPDU is ignored and the port on Switch C transitions from a forwarding
to a root-inconsistent state (shown by the green X icon). As a result, Switch A becomes the root bridge.
Figure 130. STP Root Guard Prevents Bridging Loops
Spanning Tree Protocol (STP)
1056
Содержание S4048T
Страница 1: ...Dell Configuration Guide for the S4048T ON System 9 10 0 1 ...
Страница 98: ... saveenv 7 Reload the system uBoot mode reset Management 98 ...
Страница 113: ...Total CFM Pkts 10303 CCM Pkts 0 LBM Pkts 0 LTM Pkts 3 LBR Pkts 0 LTR Pkts 0 802 1ag 113 ...
Страница 411: ...mode transit no disable Force10 Resilient Ring Protocol FRRP 411 ...
Страница 590: ...Figure 67 Inspecting the LAG Configuration Link Aggregation Control Protocol LACP 590 ...
Страница 591: ...Figure 68 Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol LACP 591 ...
Страница 594: ...Figure 70 Inspecting a LAG Port on BRAVO Using the show interface Command Link Aggregation Control Protocol LACP 594 ...
Страница 595: ...Figure 71 Inspecting LAG 10 Using the show interfaces port channel Command Link Aggregation Control Protocol LACP 595 ...
Страница 646: ...Figure 87 Configuring Interfaces for MSDP Multicast Source Discovery Protocol MSDP 646 ...
Страница 647: ...Figure 88 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 647 ...
Страница 648: ...Figure 89 Configuring PIM in Multiple Routing Domains Multicast Source Discovery Protocol MSDP 648 ...
Страница 653: ...Figure 91 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 653 ...
Страница 654: ...Figure 92 MSDP Default Peer Scenario 3 Multicast Source Discovery Protocol MSDP 654 ...
Страница 955: ...Figure 119 Single and Double Tag First byte TPID Match Service Provider Bridging 955 ...
Страница 1179: ...Figure 147 Create Hypervisor Figure 148 Edit Hypervisor Figure 149 Create Transport Connector Virtual Extensible LAN VXLAN 1179 ...