27
7679H–CAN–08/08
AT90CAN32/64/128
4.4
I/O Memory
The I/O space definition of the AT90CAN32/64/128 is shown in
All AT90CAN32/64/128 I/Os and peripherals are placed in the I/O space. All I/O locations may
be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the
32 general purpose working registers and the I/O space. I/O registers within the address range
0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing I/O registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The AT90CAN32/64/128 is a
complex microcontroller with more peripheral units than can be supported within the 64 location
reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 -
0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.
Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other
AVR’s, the CBI and SBI instructions will only operate on the specified bit, and can therefore be
used on registers containing such status flags. The CBI and SBI instructions work with registers
0x00 to 0x1F only.
The I/O and peripherals control registers are explained in later sections.
4.5
External Memory Interface
With all the features the External Memory Interface provides, it is well suited to operate as an
interface to memory devices such as External SRAM and Flash, and peripherals such as LCD-
display, A/D, and D/A. The main features are:
• Four different wait-state settings (including no wait-state).
• Independent wait-state setting for different extErnal Memory sectors (configurable sector
size).
• The number of bits dedicated to address high byte is selectable.
• Bus keepers on data lines to minimize current consumption (optional).
4.5.1
Overview
When the e
X
ternal
MEM
ory (XMEM) is enabled, address space outside the internal SRAM
becomes available using the dedicated External Memory pins (see
,
, and
).
The memory configuration is shown in
.