
80
• Surge/HGBP Deadband controls the amount the
ACTIVE
DELTA TSAT
must drop below the Surge Prevention to
de-activate Surge Prevention.
Fine Tuning VPF Surge Prevention — Figures 37-40 show
how the parameters defined below will affect the configured
surge line.
NOTE: Before tuning surge prevention check for VFD speed
limitation or capacity overrides. If the source of low capacity is
found in one of these places, do not proceed with an attempt to
tune the Surge Prevention configurations.
If capacity is not reached
and
1. ACTUAL GUIDE VANE POSITION < GUIDE VANE
TRAVEL RANGE
and
2. SURGE PREVENTION ACTIVE = YES
and
3. PERCENT LINE CURRENT < 100%
then
the surge line is probably too conservative.
Note the following parameters from ICVC when maximum
AVERAGE LINE CURRENT achieved:
• EVAPORATOR REFRIGERANT TEMP
• EVAPORATOR PRESSURE
• CONDENSER REFRIG TEMP
• CONDENSER PRESSURE
• ACTUAL GUIDE VANE POSITION
• AVERAGE LINE CURRENT
The ACTIVE DELTA Tsat and the SURGE LINE DELTA
TSAT can be monitored on the VPF_STAT screen. When
DELTA TSAT exceeds SURGE LINE DELTA TSAT surge
prevention will occur.
If ACTUAL GUIDE VANE POSITION is less than 30%,
then increase SURGE/HGBP DELTA TSMIN in steps of 2º F
until one of the three conditions listed above no longer applies.
Do not change SURGE/HGBP DELTA TSMAX.
If ACTUAL GUIDE VANE POSITION is greater than
60%, then increase SURGE/HGBP DELTA TSMAX in steps
of 2º F until cooling capacity is reached or one of conditions
listed above no longer applies. Do not change SURGE/HGBP
DELTA TSMIN.
If ACTUAL GUIDE VANE POSITION is more than 30%
AND less than 60%, then:
1. Increase SURGE/HGBP DELTA TSMIN in steps of 2º F.
2. Increase SURGE/HGBP DELTA TSMAX in steps of
2º F.
3. Repeat Steps 1 and 2 until one of the conditions listed
above no longer applies.
NOTE: DELTA TSMIN should seldom need to be increased
more than 10 degrees above the selection program value. Like-
wise, DELTA TSMAX rarely requires more than a 2 degree
increase.
If surge is encountered then the surge line is probably too
optimistic or high. Note following parameters from ICVC at
surge:
• EVAPORATOR REFRIGERANT TEMP
• EVAPORATOR PRESSURE
• CONDENSER REFRIG TEMP
• CONDENSER PRESSURE
• ACTUAL GUIDE VANE POSITION
• AVERAGE LINE CURRENT
0
5
10
15
20
25
30
35
40
0
10
20
30
40
50
60
70
80
90
100
110
Tsmin=30
Tsmin=40
Tsmin=50
GV_POS
Delta T
sat
Fig. 37 — Effect of SURGE/HGBP DELTA TSMIN
on Surge Prevention
a19-1959
0
5
10
15
20
25
30
35
40
45
0
10
20
30
40
50
60
70
80
90
100
110
Tsmax=60
Tsmax=70
Tsmax=80
GV_POS
Delta T
sat
Fig. 38 — Effect of SURGE/HGBP DELTA TSMAX
on Surge Prevention
a19-1960
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
0
10
20
30
40
50
60
70
80
90
100
110
Shape factor
= -0.020
Shape factor
= -0.040
Shape factor
= -0.050
GV_POS
Delta T
sat
Fig. 39 — Effect of SURGE LINE SHAPE FACTOR
on Surge Prevention
a19-1961
Содержание AquaEdge 19XR series
Страница 69: ...69 Fig 33 19XR Leak Test Procedures a19 1625 ...
Страница 150: ...150 Fig 62 PIC II Control Panel Wiring Schematic Frame 2 3 4 and E Compressors without Split Ring Diffuser a19 1870 ...
Страница 152: ...152 a19 1871 Fig 63 PIC II Control Panel Wiring Schematic Frame 4 and 5 Compressors with Split Ring Diffuser ...
Страница 154: ...154 Fig 64 Benshaw Inc Wye Delta Unit Mounted Starter Wiring Schematic Low Voltage a19 1873 ...
Страница 161: ...161 Fig 69 Typical Low Voltage Variable Frequency Drive VFD Wiring Schematic 575 v ...
Страница 162: ...162 Fig 69 Typical Low Voltage Variable Frequency Drive VFD Wiring Schematic 575 v cont ...
Страница 163: ...163 Fig 69 Typical Low Voltage Variable Frequency Drive VFD Wiring Schematic 575 v cont a19 1880 ...
Страница 176: ...176 CONTINUED ON NEXT PAGE Fig 71 Typical Medium Voltage Variable Frequency Drive VFD Wiring Schematic cont a19 2064 ...
Страница 186: ...186 APPENDIX B LEAD LAG WIRING 19XR Lead Lag Schematic Series Cooler Flow a19 1655 ...
Страница 187: ...187 APPENDIX B LEAD LAG WIRING cont 19XR Lead Lag Schematic Parallel Cooler Flow a19 1717 ...