background image

LMK05028

High-performance Network Synchronizer

Output 

Dividers

H

itl

e

ss 
Sw

itch
in

g

 

w

ith

 p

ri

o

ri

ty

Output 

Buffers

6

8

4

Power 

Conditioning

Device Control

I2C/SPI/Pin mode

EEPROM/ROM

TCXO/OCXO 

(Optional)

PLL Core 1

PLL Core 2

XO

Copyright © 2018, Texas Instruments Incorporated

VDD,VDDO

Logic I/O

ADV

ANCEINFORMA

TION

Product

Folder

Order

Now

Technical

Documents

Tools &
Software

Support &
Community

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for pre-production products; subject to
change without notice.

LMK05028

SNAS724 – FEBRUARY 2018

LMK05028 Low-Jitter Dual Channel Clock Synchronizer With Eight Outputs and Integrated

EEPROM

1

1 Features

1

Two Independent PLL Cores, Each Featuring:

Jitter: 150-fs RMS for Outputs

100 MHz

Phase Noise: –102 dBc/Hz at 100-Hz Offset
for 122.88 MHz

Hitless Switching: 50-ps Phase Transient With
Phase Cancellation

Programmable Loop Bandwidth With Fastlock

Standards-Compliant Synchronization and
Holdover Using a Low-Cost TCXO/OCXO

Any Input to Any Output Frequency Translation

Four Reference Clock Inputs

Priority-Based Input Selection (Auto or
Manual)

Digital Holdover on Loss of Reference

Eight Clock Outputs With Programmable Drivers

Up to Six Different Output Frequencies

AC-LVDS, AC-CML, AC-LVPECL, HCSL, and
1.8-V or 2.5-V LVCMOS Output Formats

EEPROM/ROM for Custom Startup Clock
Profiles

(2)

Flexible Configuration Options

1 Hz (1 PPS) to 750 MHz on Input and Output

XO: 10 to 100 MHz, TCXO: 10 to 54 MHz

DCO Mode: < 1 ppt/Step for Fine Frequency
and Phase Steering (IEEE 1588 Slave
Operation)

Zero Delay for Deterministic Phase Offset

Robust Clock Monitoring and Status

I2C or SPI Interface

Excellent Power Supply Noise Rejection

Supply: 3.3-V Core With 1.8-V, 2.5-V, or 3.3-V
Output

Industrial Temperature Range: –40°C to +85°C

2 Applications

SyncE (G.8262), SONET/SDH (Stratum 3/3E,
G.813, GR-1244, GR-253), IEEE 1588 (PTP)
Slave Clock, or Optical Transport Network (G.709)
Synchronization

Telecom and Enterprise Line Cards

Wireless Base Station (BTS)

Test and Measurement, Broadcast Video, and
Medical Ultrasound

Jitter and Wander Attenuation, Precise Frequency
Translation, and Low-Jitter Clock Generation for
FPGA, DSP, ASIC, and CPU Devices.

3 Description

The LMK05028 device is a high-performance clock
generator, jitter cleaner, and clock synchronizer with
advanced

reference

clock

selection

and

hitless

switching to meet the stringent requirements of
communications infrastructure applications. The ultra-
low jitter reduces bit error rates (BER) in high-speed
serial links.

The device has two independent PLL cores that can
each synchronize or lock to one of four reference
clock inputs, and the LMK05028 can generate up to
eight

output

clocks

with

up

to

six

different

frequencies.

Device Information

(1)

PART NUMBER

PACKAGE

BODY SIZE (NOM)

LMK05028

VQFN (64)

9.00 mm × 9.00 mm

(1) For all available packages, see the orderable addendum at

the end of the data sheet.

(2) Contact TI Field Sales to inquire about custom factory pre-

programmed devices.

LMK05028 Simplified Block Diagram

Summary of Contents for LMK05028

Page 1: ...Clock Profiles 2 Flexible Configuration Options 1 Hz 1 PPS to 750 MHz on Input and Output XO 10 to 100 MHz TCXO 10 to 54 MHz DCO Mode 1 ppt Step for Fine Frequency and Phase Steering IEEE 1588 Slave Operation Zero Delay for Deterministic Phase Offset Robust Clock Monitoring and Status I2C or SPI Interface Excellent Power Supply Noise Rejection Supply 3 3 V Core With 1 8 V 2 5 V or 3 3 V Output Ind...

Page 2: ... GPIO 6 0 INSELx_ 1 0 12 7 17 3 Level Logic Input Characteristics HW_SW_CTRL STATUS 1 0 12 7 18 Logic Output Characteristics STATUS 1 0 GPIO 6 5 GPIO2 SDO 13 7 19 I2 C Interface Characteristics SDA SCL 13 7 20 SPI Timing Requirements SDA SCL GPIO1 SCS GPIO2 SDO 13 7 21 Other Characteristics 14 7 22 PLL Clock Output Performance Characteristics 14 7 23 Timing Diagrams 15 8 Parameter Measurement Info...

Page 3: ...ldover when a loss of reference LOR is detected A LOR can be detected upon any violation of the threshold limits set for the input clock amplitude frequency missing pulse and runt pulse monitors The threshold limits for each input monitor can be set and enabled independently per clock input The holdover output frequency accuracy can be determined by the historical average frequency to minimize fre...

Page 4: ..._P 35 SDA SDI 50 VDDO_45 31 OUT2_P 15 IN1_N 34 OUT3_P 49 VDD_APLL1 32 OUT2_N 16 VDD_IN1 33 OUT3_N Not to scale GND 4 LMK05028 SNAS724 FEBRUARY 2018 www ti com Product Folder Links LMK05028 Submit Documentation Feedback Copyright 2018 Texas Instruments Incorporated 1 G Ground P Power I Input O Output I O Input or Output A Analog 6 Pin Configuration and Functions RGC Package 64 Pin VQFN Top View Pin...

Page 5: ...ith the N input pulled down to ground An unused input pair can be left floating LVCMOS input mode is recommended for input frequencies below 1 MHz IN0_N 2 I IN1_P 14 I IN1_N 15 I IN2_P 10 I IN2_N 11 I IN3_P 5 I IN3_N 6 I XO_P 43 I XO Input This input pair can accept a differential or single ended clock signal from a low jitter local oscillator to lock the APLLs This input has programmable input ty...

Page 6: ... reset POR See Table 2 for start up mode descriptions and logic pin functions PDN 46 I Device Power Down active low When PDN is pulled low the device is in hard reset and all blocks including the serial interface are powered down When PDN is pulled high the device is started according to device mode selected by HW_SW_CTRL and begins normal operation with all internal circuits reset to their initia...

Page 7: ...ock SCK GPIO1 SPI Chip Select SCS GPIO2 SPI Data Output SDO GPIO 6 3 0 Same as for HW_SW_CTRL 0 1 ROM I2C Hard pin mode Registers are initialized from the ROM page selected by GPIO pins and I2C interface is enabled Logic pins SDA SCL I2C Data I2C Clock open drain Pins require external pullups 1 kΩ GPIO 3 0 1 ROM Page Select Input 0000 to 1111b GPIO 6 5 3 Status Outputs GPIO4 Not used during POR Af...

Page 8: ...ce junction temperature TJ TPCB ψJB x Power Measurement of ψJB is defined by JESD51 6 7 4 Thermal Information THERMAL METRIC 1 2 3 LMK05028 UNIT RGC VQFN 64 PINS 0 LFM AIRFLOW RθJA Junction to ambient thermal resistance 20 5 C W RθJC top Junction to case top thermal resistance 6 3 C W RθJB Junction to board thermal resistance 4 9 C W RθJC bot Junction to case bottom thermal resistance 0 3 C W ψJT ...

Page 9: ...duction 2 For inputs less than 1 MHz use LVCMOS input or else disable the amplitude monitor 7 6 Clock Input Characteristics INx_P N VDD 3 3 V 5 VDDO 1 8 V 5 2 5 V 5 3 3 V 5 TA 40ºC to 85ºC PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fCLK Input frequency 1 LVCMOS input 1E 6 250 MHz Differential input 2 1 750 VIH Input high voltage LVCMOS input 1 4 V VIL Input low voltage 0 0 8 V VIN_DIFF Differentia...

Page 10: ...5ºC Fast slew rate PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fOUT Output frequency 1 1E 6 200 MHz VOH Output high voltage IOH 1 mA 1 9 V VOL Output low voltage IOL 1 mA 0 525 V IOH Output high current 48 mA IOL Output low current 55 mA tR tF Output rise fall time 1 20 to 80 250 TBD ps tSKEW Output to output skew 1 Same post divider output divide values and output type 100 ps tSKEW Output to outpu...

Page 11: ...put common mode 100 430 mV tSKEW Output to output skew 1 Same post divider output divide values and output type 100 ps tR tF Output rise fall time 1 20 to 80 300 MHz 150 300 ps 100 mV around center point 300 MHz 200 PN Floor Output phase noise floor fOFFSET 10 MHz 156 25 MHz 160 dBc Hz ODC Output duty cycle 1 Not PLL bypass output 45 55 1 Parameter is specified by characterization and is not teste...

Page 12: ...racterization and is not tested in production 7 15 HCSL Output Characteristics OUTx_P N VDD 3 3 V 5 VDDO 1 8 V 5 2 5 V 5 3 3 V 5 TA 40ºC to 85ºC Output pair terminated with 50 Ω to GND Fast slew rate PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fOUT Output frequency 400 MHz VOH Output high voltage 600 880 mV VOL Output low voltage 150 150 mV tSKEW Output to output skew 1 Same post divider output div...

Page 13: ... UNIT VIH Input high voltage 1 2 V VIL Input low voltage 0 5 V IIH Input leakage 15 15 uA CIN Input capacitance 1 pF VOL Output low voltage IOL 3 mA 0 3 V fSCL SCL clock rate Standard 100 kHz fSCL SCL clock rate Fast mode 400 kHz tSU_STA START condition setup time SCL high before SDA low 0 6 us tH_STA START condition hold time SCL low after SDA low 0 6 us tPH_STA SCL pulse width high 0 6 us tPL_ST...

Page 14: ... loop bandwidth may be lower Applies to REF DPLL and TCXO DPLL The valid loop bandwidth range may be constrained by the DPLL loop mode and REF and or TCXO input frequencies used in a given configuration 3 First PLL domain to start up is selected by PLLSTRTMODE bit Assumes XO input clock is stable before rising edge of PDN PLL VCO wait timers set to 3 ms 0 4 ms and output channels auto muted during...

Page 15: ...20 80 tR tF 15 LMK05028 www ti com SNAS724 FEBRUARY 2018 Product Folder Links LMK05028 Submit Documentation Feedback Copyright 2018 Texas Instruments Incorporated 7 23 Timing Diagrams Figure 2 Differential Output Voltage and Rise Fall Time Figure 3 Single Ended Output Voltage and Rise Fall Time ...

Page 16: ...E tPHO DIFF tSK DIFF INT OUTx_P N tSK SE INT INx_P Single Ended tSK SE DIFF INT Single Ended PLL 16 LMK05028 SNAS724 FEBRUARY 2018 www ti com Product Folder Links LMK05028 Submit Documentation Feedback Copyright 2018 Texas Instruments Incorporated Timing Diagrams continued Figure 4 Differential and Single Ended Output Skew and Phase Offset ...

Page 17: ...right 2018 Texas Instruments Incorporated 17 LMK05028 www ti com SNAS724 FEBRUARY 2018 Product Folder Links LMK05028 Submit Documentation Feedback Copyright 2018 Texas Instruments Incorporated 8 Parameter Measurement Information 8 1 Test Configuration This section describes the test configuration for several electrical characteristics Figure 5 LVCMOS Output DC Configuration During Device Test Figu...

Page 18: ...m Analyzer AC LVPECL AC LVDS AC CML Balun LMK05028 Copyright 2018 Texas Instruments Incorporated 18 LMK05028 SNAS724 FEBRUARY 2018 www ti com Product Folder Links LMK05028 Submit Documentation Feedback Copyright 2018 Texas Instruments Incorporated Test Configuration continued Figure 9 AC LVPECL AC LVDS AC CML Output AC Configuration During Device Test Figure 10 HCSL Output Driving 100 Ω Differenti...

Page 19: ...ignal Generator LVPECL 50 50 LMK05028 VDD_IN 2 Copyright 2018 Texas Instruments Incorporated 19 LMK05028 www ti com SNAS724 FEBRUARY 2018 Product Folder Links LMK05028 Submit Documentation Feedback Copyright 2018 Texas Instruments Incorporated Test Configuration continued Figure 14 LVPECL Input DC Configuration During Device Test Figure 15 HCSL Input DC Configuration During Device Test 100 Ω diffe...

Page 20: ...e supports programmable loop bandwidth for jitter or wander attenuation and fractional frequency translation for flexible frequency planning The advanced synchronization options in each PLL core include superior hitless switching digital holdover DCO mode with 1 ppt step for precise clock steering IEEE 1588 PTP slave operation and zero delay for deterministic input to output phase offset The devic...

Page 21: ...CLK To TCXO TDC To REF TDC To TCXO TDC To REF TDC To APLL To APLL P Div range 4 9 11 13 VCO1 VCO2 IN4 PLL1 FB CLK IN5 PLL2 FB CLK AC LVDS CML LVPECL HCSL and 2 5 1 8 V LVCMOS x2 Copyright 2018 Texas Instruments Incorporated 21 LMK05028 www ti com SNAS724 FEBRUARY 2018 Product Folder Links LMK05028 Submit Documentation Feedback Copyright 2018 Texas Instruments Incorporated 9 2 Functional Block Diag...

Page 22: ...ave and has a internal weak bias of about 0 6 V The input voltage swing should be less than 1 2 Vpp and attenuated or terminated before AC coupling to the pin This input can be driven from a low frequency TCXO OCXO or external timing reference that conforms to the frequency accuracy and holdover stability requirements required by the application TCXO and OCXO frequencies of 10 to 12 8 MHz are wide...

Page 23: ...tion continued Table 3 Input Buffer Configurations for Reference and XO Inputs MODE INTERNAL COUPLING TERMINATION HCSL AC Internal 50 Ω LVDS DC coupled AC Internal 100 Ω LVDS CML LVPECL AC coupled AC Internal 100 Ω CML or LVPECL DC coupled AC External LVCMOS DC External Figure 20 through Figure 24 show recommendations for interfacing LMK05028 s clock inputs with LVCMOS LVPECL LVDS CML and HCSL dri...

Page 24: ...e DPLL automatically selects the valid input with the highest configured priority If a clock with higher priority becomes valid the DPLL will automatically switch over to that clock immediately Auto Non Revertive In this mode the DPLL automatically selects the highest priority input that is valid If a higher priority input because valid the DPLL will not switch over until the currently selected in...

Page 25: ... 5 Manual Input Selection by Hardware Pins INSELx_ 1 0 PINS DPLLx_REF_MAN_SEL BIT SELECTED INPUT 00b 1 IN0 01b 1 IN1 10b 1 IN2 11b 1 IN3 9 3 5 Hitless Switching Each DPLL supports hitless switching through phase cancellation which restricts the rate of change of output phase during a reference switchover event in accordance with Stratum 3 4E Stratum 2 3E and Synchronous Ethernet EEC Option 1 Durin...

Page 26: ...upt register bit for the selected input of each DPLL The valid status of all inputs can also be read through a status register 9 3 7 1 1 Amplitude Monitor The amplitude monitor detects if the input meets or violates the amplitude related thresholds for differential or LVCMOS input modes The differential input detector clears its flag when the input voltage swing is above the minimum setting select...

Page 27: ...re it is qualified and valid for selection The validation timer count and enable settings are register configurable 9 3 7 2 XO Input Monitoring The XO input has an amplitude and frequency monitor for input qualification before it can be used to lock the APLLs The XO input amplitude monitor can be configured and operates the same as the reference input amplitude detector The XO loss of signal LOS s...

Page 28: ...egins to accumulate history once the DPLL locks to a new reference The previous history will be cleared when a switchover to a new reference occurs assuming the history persistence bit HIST_HOLD is not set The history can be manually cleared by asserting the history soft reset bit HIST_SW_RST If the history persistence bit is set the history monitor will not clear the previous history value during...

Page 29: ...pm timer active DPLLy REF N Divider Reset 9 3 7 7 Interrupt Any of the 4 status pins can be configured as a device interrupt output pin The interrupt configuration is set through registers When the interrupt is enabled the interrupt flag can be triggered from any combination of interrupt status indicators including LOS for the XO TCXO and DPLL selected inputs LOL for each DPLL and APLL and holdove...

Page 30: ...quency relationships for closed loop operation according to the loop mode configured on each PLL core To operate in free run mode APLL only the condition in Equation 1 must be met To operate in 3 loop mode REF DPLL TCXO DPLL and APLL the conditions in Equation 1 Equation 2 Equation 3 and Equation 4 must be met To operate in 2 loop mode REF DPLL and APLL the conditions in Equation 1 Equation 3 and ...

Page 31: ...MREF DPLL TCXO DPLL feedback divider numerator value 40 bits 0 to 0 to 240 1 DENREF DPLL REF DPLL feedback divider denominator value 40 bits 1 to 240 3 Equation 4 relates to any reference inputs assigned to a DPLL to ensure a constant REF TDC rate for proper input switchover FREF TDC FIN0 R0 FIN1 R1 FIN2 R2 FIN3 R3 4 Equation 5 Equation 6 and Equation 7 relate to the output frequency according to ...

Page 32: ... to IN3 The output of each RDIV sets the frequencies to the reference input mux and the TDC rate of the REF DPLL There are also two additional RDIV for the internal VCO loopback clocks IN4 and IN5 which could be used in cascaded DPLL configurations IN4 refers to the VCO1 loopback clock to DPLL2 reference input and IN5 refers to the VCO2 loopback clock to DPLL1 reference input 9 3 8 9 TCXO Input Do...

Page 33: ...uning range of the VCO While transparent to the user the LMK05028 performs the following steps during a VCO calibration sequence 1 Normal Operation When the LMK05028 is in normal operational mode the state of both the power down pin PDN is high 2 Entering the reset state If the user wishes to restore all device defaults and initiate a VCO calibration sequence then the host system must place the de...

Page 34: ... and 20 bit output dividers that can support output frequencies from 1 Hz 1 PPS to 750 MHz In this case the total output divide value is the product of the cascaded divider values 9 3 11 Clock Outputs Each output can be configured through registers as Differential AC coupled AC LVDS CML LVPECL HCSL or 2 5 V 1 8 V LVCMOS clocks Outputs 2 and 3 share an output supply VDDO_23 as do outputs 4 and 5 VD...

Page 35: ...output should have external 50 Ω termination to ground at either the source or load side The LVCMOS outputs on each side P and N can be configured individually to be complementary or in phase or can be disabled HiZ or static low 1 8 V or 2 5 V LVCMOS outputs can be configured using VDDO of 1 8 V or 2 5 V respectively Figure 29 and Figure 34 show recommendations for interfacing between clock output...

Page 36: ...initial phases synchronized or aligned SYNC can also be used to mute any SYNC enabled outputs to prevent output clocks from being distributed to down stream devices such as DSPs or FPGAs until they are configured and ready to accept the incoming clock Table 6 Output Channel Synchronization GPIO0 PIN OUTPUT DIVIDER AND DRIVER STATE 0 Output driver s muted and output divider s reset 1 Normal output ...

Page 37: ...ion to reduce the lock time Once lock acquisition is done the loop bandwidth is set to its nominal loop bandwidth setting 9 4 3 Locked Mode When a DPLL has completed lock acquisition the PLL output clocks will be frequency and phase locked to its selected input clock While the DPLL is locked the output clocks will not be affected by frequency drift on the XO input or the TCXO input if the TCXO DPL...

Page 38: ...hen DCO mode is enabled for the REF DPLL when DPLLy_DCO_SEL_REF_TCXOB 1 DPLLy_FDEV Reqd_ppb 1E9 DENREF DPLL FINx Rx FVCO P1 PRREF DPLL where DPLLy_FDEV Frequency deviation value 38 bits 0 to 238 1 Reqd_ppb Required DCO frequency step size in ppb DENREF DPLL REF DPLL feedback divider denominator value 40 bits 1 to 1 to 240 FINx Reference input frequency x 0 1 2 3 Rx Reference input divider 16 bits ...

Page 39: ...er start up and monitors its status The register map configurations are the same for I2C and SPI Figure 36 shows the device start up mode configurations Table 2 shows the logic pin functions used to enter and operate in each device mode Figure 36 LMK05028 Programming Flow 9 5 1 Interface and Control The system host MCU FPGA can use either I2C or SPI to access the register SRAM and EEPROM maps The ...

Page 40: ...3 2 1 0 Reg1 7 6 5 4 3 2 1 0 Reg2 7 6 5 4 3 2 1 0 Reg3 7 6 5 4 3 2 1 0 Reg86 7 6 5 4 3 2 1 0 Reg87 7 6 5 4 3 2 1 0 Reg88 7 6 5 4 3 2 1 0 Reg89 7 6 5 4 3 2 1 0 Reg 0 7 6 5 4 3 2 1 0 Reg1 7 6 5 4 3 2 1 0 Reg2 7 6 5 4 3 2 1 0 Reg3 7 6 5 4 3 2 1 0 Reg86 7 6 5 4 3 2 1 0 Reg87 7 6 5 4 3 2 1 0 Reg88 7 6 5 4 3 2 1 0 Reg89 7 6 5 4 3 2 1 0 Reg 0 7 6 5 4 3 2 1 0 Reg1 7 6 5 4 3 2 1 0 Reg2 7 6 5 4 3 2 1 0 Reg3...

Page 41: ...upports bus rates of 100 kHz standard mode and 400 kHz fast mode Slower bus rates can work as long as the other I2C specifications are met The I2C timing diagram is shown in Figure 38 Figure 38 I2C Timing Diagram In EEPROM mode the LMK05028 can support up 4 different I2C addresses depending on the GPIO 2 1 pins The 7 bit I2C address is 11000xxb where the two LSBs are determined by the GPIO 2 1 inp...

Page 42: ...e configuration registers are programmed the EEPROM can be programmed by the register writes in two steps Write SRAM and Program EEPROM 9 5 4 1 Write SRAM The SRAM array is volatile shadow memory mapped to a subset of the active configuration registers that determine the device operation at POR or initialization After the active registers have been programmed they can be committed to the SRAM thro...

Page 43: ... NVMUNLK bits This unlocks the EEPROM from protected state to allow programming 2 Write a 1 to NVM_ERASE_PROG bits This programs EEPROM from the entire SRAM contents The total Erase Program sequence takes about 230 ms 3 Poll the NVMBUSY bit The EEPROM programming is done when the NVMBUSY bit is cleared The NVMCNT register value will be auto incremented by 1 to reflect total number of EEPROM progra...

Page 44: ... s customers are responsible for determining suitability of components for their purposes Customers should validate and test their design implementation to confirm system functionality 10 1 Application Information 10 1 1 Device Start Up Sequence The device start up sequence is shown in Figure 42 In the case when VDDO_x is delayed until after the POR the output channel is held in reset and its outp...

Page 45: ...disabled Power on Reset Device setting from EEPROM image is loaded Registers programmable via I2C or SPI GPIO 4 3 can be used for DPLL1 2 FINC FDEC and GPIO 6 5 can also be repurposed as device status outputs Normal device operation in Soft Pin Mode Host can reprogram device via I2C or SPI and can be written to on chip EEPROM If reference is lost or higher priority reference is available refer to ...

Page 46: ...e While all VDD core supplies should be powered by the same 3 3 V rail the individual output supplies can be powered from separate 1 8 V 2 5 V or 3 3 V rails This can allow all output supplies at 1 8 V to minimize power consumption It can also allow mixed output driver levels simultaneously for example a 2 5 V LVCMOS clock from a 2 5 V rail and other differential clocks from a 1 8 V rail 10 1 3 2 ...

Page 47: ...In case the VDD core supplies ramp with a non monotonic manner or with a slow ramp time from 0 V to 3 135 V of over 100 ms TI recommends starting the PLL calibration after all of the core supplies have settled at 3 135 V This can be realized by delaying the PDN low to high transition in a manner similar to the condition shown in Figure 44 10 2 Typical Application Figure 45 shows a reference schema...

Page 48: ... 3 3V 1µF C3 3 3V VDDDIG 220 ohm FB3 10µF C11 0 1µF C6 VDDPLL1 3 3V 220 ohm FB4 10µF C12 0 1µF C7 VDDPLL2 3 3V 220 ohm FB5 10µF C13 0 1µF C8 VDDOx 1 8V 2 5V 3 3V GPIO0 GPIO6 GPIO5 GPIO3 GPIO1 SCS GPIO2 SDO GPIO4 10k R2 10k R3 10k R4 10k R5 10k R6 10k R7 10k R8 10k R12 10k R13 10k R14 10k R15 10k R16 10k R17 DNP DNP DNP DNP DNP DNP PDN C14 DNP SDA SDI SCL SCK 1 5V 3 3V 4 7k R9 4 7k R10 10k R11 HW_S...

Page 49: ... interface after power up and issue a soft reset by RESET_SW bit to start the device The host can also store the settings to the EEPROM to allow self startup with these register settings on subsequent power on reset cycles Alternatively a LMK05028 setup file for TICS Pro tcs can be sent to TI to request custom factory pre programmed devices 2 Tie the HW_SW_CTRL pin to 0 or float it VIM to select E...

Page 50: ...mode through registers to match the receiver interface requirements Differential outputs should be AC coupled and terminated or biased at the receiver inputs HCSL outputs should have 50 Ω termination to GND at source or load side unless the internal source termination is enabled by registers LVCMOS outputs have internal source termination to drive 50 Ω traces directly LVCMOS VOH level is determine...

Page 51: ...ongest expected input clock period including jitter and gapped input clock if applicable Disable monitor for inputs 2 kHz Runt pulse monitor Set the early window threshold TEARLY to allow for the shortest expected input clock period including jitter Disable monitor for inputs 2 kHz Phase validation monitor Set the phase validation threshold to account for worst case input peak to peak jitter speci...

Page 52: ...he other side of the capacitor using a low impedance connection to the ground plane Does not indicate actual location of LMK05028 supply pins Figure 46 Generalized Placement of Power Supply Bypass Capacitors 12 Layout 12 1 Layout Guidelines Isolate input XO TCXO and output clocks from adjacent clocks with different frequencies and other nearby dynamic signals Avoid impedance discontinuities on con...

Page 53: ...ample Figure 47 Recommended PCB Layout of LMK05028 12 3 Thermal Reliability The LMK05028 is a high performance device To ensure good electrical and thermal performance it is recommended to design a thermally enhanced interface between the IC ground thermal pad and the PCB ground using at least 7x7 through hole via pattern connected to multiple PCB ground layers like shown in Figure 47 ...

Page 54: ...rs Design Support TI s Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support 13 3 Trademarks E2E is a trademark of Texas Instruments All other trademarks are the property of their respective owners 13 4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD Texas Instruments recommends that all integrated...

Page 55: ... the current EU RoHS requirements for all 10 RoHS substances including the requirement that RoHS substance do not exceed 0 1 by weight in homogeneous materials Where designed to be soldered at high temperatures RoHS products are suitable for use in specified lead free processes TI may reference these types of products as Pb Free RoHS Exempt TI defines RoHS Exempt to mean products that contain lead...

Page 56: ... better integrate information from third parties TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals TI and TI suppliers consider certain information to be proprietary and thus CAS numbers and other limited information may not be available for r...

Page 57: ......

Page 58: ...oduct s identified in such TI Resource NO OTHER LICENSE EXPRESS OR IMPLIED BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN including but not limited to any patent right copyright mask work right or other intellectual property right relating to any combination machine or p...

Reviews: