1
2
3
4
10
20
30
40
50
60
70
75
80
90
100
120
130
140
150
160
170
180
190
195
200
210
220
225
230
232
234
240
250
260
270
280
290
300
310
315
320
500
510
520
530
540
550
560
570
580
590
600
610
620
630
REM SCHWEITZER ENGINEERING LABORATORIES, INC.
REM 2350 NE Hopkins Court
REM Pullman, WA 99163-5603
REM
REM COMPUTE DOBLE SETTINGS FOR A ONE-BUS SYSTEM
REM HOMOGENEOUS SYSTEM
REM SOURCE VOLTS= 67 L-N
REM
REM ENTER IMPEDANCES FOR 100% OF LINE
INPUT "ENTER Z1: R,X";Rl,Sl
INPUT "ENTER Z0: R,X";R0,S0
INPUT "ENTER RF FOR GND FLTS";RF
REM
REM ENTER BUS LOC. FROM SOURCE
INPUT "DIST SOURCE TO BUS (PU OF LINE)";S
INPUT DIST BUS TO FAULT (PU OF LINE) ;F
REM
REM PHASE A TO GROUND
REM COMPUTE POS SEQ CURRENT
X = R0+2*R1: Y = S0+2*S1
R3 = R1-R0: S3 = S1-S0
AR=1(S+F): AI=0
BR=X
: BI=Y
BR=BR+3*RF/(S+F)
GOSUB 2000
I = RR : J = RI
IA = 3*67*I: JA=3*67*J
IB=0:JB=0:IC=0:JC=0
AR=X:AI=Y:BR=I:BI=J
GOSUB 1000
UA=67*(1-S*RR):VA=67*(-S*RI)
AR=R3
:AI=S3
BR=I
:BI=J
GOSUB 1000
TR=S*RR
:TS=S*RI
UB=67*(-0.5+TR)
VB=67*(-SQR(3)/2+TS)
UC=67*(-0.5+TR)
VC=67*(SQR(3)/2+TS)
FF$="A-G"
GOSUB 4041
REM B-C FAULT
AR=1 : AI=0
BR=2*R1*(S+F):BI=2*S1*(S+F)
GOSUB 2000
I=RR: J=RI
IA=0:JA=0
AR=I:AI=J:BR=0:BI=-67*SQR(3)
GOSUB 1000
IB=RR:JB=RI:IC=-IB:JC=-JB
UA=67:VA=O
AR=I:AI=J:BR=S*RI:BI=S*Sl
GOSUB 1000
AR=RR:AI=RI:BR=O:BI=SQR(3)
GOSUB 1000
635
TR=RR:TS=RI
640
UB=67*(-0.5+TR)
650
VB=67*(-SQR(3)/2+TS)
660
UC=67*(-0.5-TR)
670
VC=67*(0.5*SQR(3)-TS)
675
FF$="B-C"
680
GOSUB 4041
900
INPUT "IMP BUS FAULT OR QUIT (I,B,F,Q)";A$
910
IF A$ = "I" THEN GOTO 50
920
IF A$ = "B" THEN GOTO 75
930
IF A$ = "F" THEN GOTO 120 ELSE GOTO 999
999
END
1000
REM MULT SUBROUTINE
1010
REM AR,AI * BR,BI = RR,RI
1020
RR=AR*BR-AI*BI
1030
RI=AI*BR+AR*BI
1040
RETURN
2000
REM DIVISION SUBROUTINE
2010
REM AR,AI / BR,BI = RR,RI
2020
D = BR*BR + BI*BI
2030
RR = AR*BR + AI*BI
2040
RR = RR/D
2050
RI = BR*AI - AR*BI
2060
RI = RI/D
2070
RETURN
3000
REM RECT TO POLAR CONV
3010
REM AR,AI, TO RH, TH
3020
PI = 3.14159265358
3030
IF (AR=0 AND AI=0) THEN
RH=O: TH=O: RETURN
3040
IF (AR=0 AND AI>0) THEN
RH=AI: TH=9O:RETURN
3050
IF (AR=0 AND AI<O) THEN RH=-AI: TH=-90: RETURN
3060
IF (AR>O) THEN TH=(l8O/PI)*ATN(AI/AR)
3070
IF (AR<O) THEN TH=(l80/PI)*ATN(AI/AR)+l80
3080
IF TH>180 THEN TH = TH-360
3090
RH=SQR(AR*AR+AI*AI)
3100
RETURN
4041
AR=UA:AI=VA:GOSUB 3000
4042
UA=RH:VA=TH
4043
AR=UB:AI=VB:GOSUB 3000
4044
UB=RH:VB=TH-VA
4045
AR=UC:AI=VC:GOSUB 3000
4046
UC=RH:VC=TH-VA
4047
AR=IA:AI=JA:GOSUB 3000
4048
IA=RH:JA=TH-VA
4049
AR=IB:AI=JB:GOSUB 3000
4050
IB=RH:JB=TH-VA
4055
AR=IC:AI=JC:GOSUB 3000
4060
IC=RH:JC=TH-VA
4061
VA=0
4100
PRINT " VA VB VC IA IB IC"
4130
PRINT USING"##.# ";UA;UB;UC;IA;IB;IC,
4132
PRINT FF$
4140
PRINT USING"#### ";VA;VB;VC;JA;JB;JC
4150
RETURN
"
"
Summary of Contents for SEL-167D
Page 3: ......
Page 6: ......
Page 8: ......
Page 9: ......
Page 10: ......
Page 11: ......
Page 51: ...LOGIC DIAGRAMS Date Code 920326 Specifications SEL 267D 167D Instruction Manual 2 31 ...
Page 52: ...Date Code 920326 Specifications 2 32 SEL 267D 167D Instruction Manual ...
Page 53: ...Date Code 920326 Specifications SEL 267D 167D Instruction Manual 2 33 ...
Page 54: ...Date Code 920326 Specifications SEL 267D 167D Instruction Manual 2 34 ...
Page 88: ...SAMPLE EVENT REPORT ...
Page 114: ......
Page 115: ......