
8
TITRATION THEORY
Potentiometry is the measurement of a potential under conditions of zero current flow. The
measured potential can then be used to determine the analytical quantity of interest, generally
a component concentration of the analyte solution. The potential that develops in the
electrochemical cell is the result of the free energy change that would occur if the chemical
phenomena were to proceed until the equilibrium condition has been satisfied.
There are many types of titrations where potentiometry can be used,e.g., pH electrodes for
acid-base titrations, platinum ORP electrodes in redox titrations, ion selective electrodes,
such as chloride or fluoride for a specific ion titration, and silver electrodes for argentometric
(silver-based) titrations.
2.1.3 Spectrophotometric Titrations
The name comes from the method used to detect the endpoint of the titration, not its
chemistry. Highly colored indicators that change color during the course of the titration are
available for many titrations. More accurate data on the titration curve can be obtained if the
light absorption is monitored instrumentally using a light source, a simple monochromator
and a photodetector, rather than visually determining the color or light absorption change.
Light absorption by either an indicator or by one of the reactants or products can be used to
monitor the titration.
In the first titration curve, Figure 2 “A”, the absorption of a metal-indicator complex is being
monitored. The absorption is constant while the metal is complexed by the EDTA titrant. The
metal indicator complex was stripped, causing a sharp break in the titration curve. The point
where all the metal is complexed and stripped from the indicator is the equivalence point.
This point is marked by “e.p.” on the graph.
In the second titration curve, Figure 2 “B”, the metal complex is being measured while being
titrated with EDTA. The new complex being formed is not colored and does not absorb light.
The extrapolated intersection of the two lines determines the equivalence point.
Figure 2.
Summary of Contents for HI 904
Page 1: ...1 QUICK START GUIDE HI 904 KARL FISCHER COULOMETRIC TITRATOR Revision 1 0 www hannainst com...
Page 4: ...4 QUICK START GUIDE...
Page 7: ...7 QUICK START GUIDE TITRATOR CONNECTIONS Front View Rear View...
Page 17: ...1 INSTRUCTION MANUAL HI 904 KARL FISCHER COULOMETRIC TITRATOR Revision 1 00 www hannainst com...
Page 20: ...4...
Page 22: ...1 2 INTRODUCTION...
Page 24: ...2 2 SETUP...
Page 27: ...2 5 SETUP 2 3 Installation 2 3 1 Titrator Top View...
Page 28: ...2 6 SETUP 2 3 2 Titrator Rear View 2 3 3 Titrator Left side View...
Page 38: ...3 2 USER INTERFACE...
Page 46: ...3 10 USER INTERFACE...
Page 48: ...4 2 GENERAL OPTIONS...
Page 82: ...5 24 METHODS...
Page 84: ...6 2 TITRATION...
Page 94: ...6 12 TITRATION...
Page 96: ...7 2 AUXILIARY FUNCTIONS...
Page 104: ...8 2 MAINTENANCE PERIPHERALS...
Page 112: ...8 10 MAINTENANCE PERIPHERALS...
Page 124: ...9 12 METHODS OPTIMIZATION...
Page 125: ...A3 2 APPENDIX 3...
Page 126: ...A3 6 APPENDIX 3 MAN HI904 09 13...
Page 127: ...A1 1 APPENDIX 1 Appendix 1 Contents A1 TECHNICAL SPECIFICATIONS A1 3...
Page 128: ...A1 2 APPENDIX 1...
Page 132: ...A2 2 APPENDIX 2...
Page 134: ...A2 4 APPENDIX 2...
Page 135: ...A3 1 APPENDIX 3 Appendix 3 Accessories A3 TITRATOR COMPONENTS A3 3...
Page 136: ...A3 2 APPENDIX 3...
Page 140: ...A3 6 APPENDIX 3 MAN HI904 09 13...
Page 141: ...1 GENERAL APPLICATIONS BROCHURE HI 904 KARL FISCHER COULOMETRIC TITRATOR www hannainst com...
Page 142: ......
Page 144: ......
Page 146: ......
Page 150: ...2 TITRATION THEORY...
Page 166: ...18 TITRATION THEORY A B Figure 8 Potential glass electrode mV C...