P846/EN OP/D
Operation
(OP) 5-8
MiCOM P846
OP
1.3.4
Fuzzy-logic engine stage
Although fast and reliable relaying algorithms can be achieved by applying conventional
Boolean logic, conflicts may arise in doubtful cases. For instance, during line energization at
no-load, CVT (Capacitive Voltage Transformers) induced electro-magnetic transients may
suggest that the active power is not zero (line closed) while the line is actually open.
Experience has demonstrated that such a conflict can be more easily resolved using multi-
criteria fuzzy Logic based approach which results in the following interesting properties:
•
Tripping decision is based on several criteria with weighting factors.
•
Uncertainty with respect to signals and settings is modeled quantitatively
•
Delay of tripping initiation depends on the amount or inflow of information related to
relaying signals, and through them, to the disturbance analyzed by the protection.
A sample general structure of the fuzzy–logic engine is shown in Figure 5. It consists of three
main steps:
1.
Fuzzyfication of 10 selected decision features from the pre-processor
2.
Fuzzy logic inference on these features, using sixteen rules or criteria
3.
Crisp decision sent to the output
1.3.4.1 Fu
tive Power and
zzyfication of 10 selected decision features from the pre-processor
Fuzzification is a necessary step prior to a fuzzy-logic based reasoning system. It consists in
transforming the crisp variables provided by the pre-processor into categories easily
described by linguistic spellings from the common language such as “Normal”, “Small,
“Large”, “Very Large”.
Figure 6 illustrates this fuzzification process for two typical variables, the Ac
the DeltaP. The first feature is defined as "SMALL" when its crisp value is below a given
threshold
θ
L while the DeltaP feature is defined as "LARGE" for crisp values higher that
θ
H.
P4089ENa
Figure 5: Graphical representation of the DLO’s fuzzy decision system
Summary of Contents for MiCOM P846
Page 2: ......
Page 4: ......
Page 5: ...Safety Section P846 EN SS H11 SS SAFETY SECTION...
Page 6: ...P846 EN SS H11 Safety Section SS...
Page 8: ...P846 EN SS H11 Safety Section SS 2 SS...
Page 16: ...P846 EN IT D Introduction MiCOM P846 IT...
Page 18: ...P846 EN IT D Introduction IT 1 2 MiCOM P846 IT...
Page 26: ...P846 EN TD D Technical Data MiCOM P846 TD...
Page 38: ...P846 EN GS D Getting Started MiCOM P846 GS...
Page 58: ...P846 EN ST D Getting Started MiCOM P846 ST...
Page 60: ...P846 EN ST D Settings ST 4 2 MiCOM P846 ST...
Page 78: ...P846 EN OP D Operation MiCOM P846 OP...
Page 104: ...P846 EN OP D Operation OP 5 26 MiCOM P846 OP...
Page 106: ...P846 EN AP D Application Notes MiCOM P846 AP...
Page 108: ...P846 EN AP D Application Notes AP 6 2 MiCOM P846 AP...
Page 122: ...P846 EN AP D Application Notes AP 6 16 MiCOM P846 AP...
Page 124: ...P846 EN PL D Programmable Logic MiCOM P846 PL...
Page 126: ...P846 EN PL D Programmable Logic PL 7 2 MiCOM P846 PL...
Page 144: ...P846 EN MR D Measurements and Recording MiCOM P846 MR...
Page 146: ...P846 EN MR D Measurements and Recording MR 8 2 MiCOM P846 MR...
Page 160: ...P846 EN FD D Firmware Design MiCOM P846 FD...
Page 182: ...P846 EN CM D Commissioning MiCOM P846 CM...
Page 228: ...P846 EN CM D Commissioning CM 10 46 MiCOM P846 CM...
Page 230: ...P846 EN MT D Maintenance MiCOM P846 MT...
Page 232: ...P846 EN MT D Maintenance MT 11 2 MiCOM P846 MT...
Page 238: ...P846 EN TS D Troubleshooting MiCOM P846 TS...
Page 240: ...P846 EN TS D Troubleshooting TS 12 2 MiCOM P846 TS...
Page 252: ...P846 EN SC D SCADA Communications MiCOM P846 SC...
Page 272: ...P846 EN SG D Symbols and Glossary MiCOM P846 SG...
Page 280: ...P846 EN SG D Symbols and Glossary SG 14 8 MiCOM P846 SG...
Page 282: ...P846 EN IN D Installation MiCOM P846 IN...
Page 284: ...P846 EN IN D Installation IN 15 2 MiCOM P846 IN...
Page 296: ...P846 EN IN D Installation IN 15 14 MiCOM P846 IN...
Page 297: ......