Chapter 7 S12 Clock, Reset and Power Management Unit (S12CPMU_UHV_V5)
S12ZVHY/S12ZVHL Family Reference Manual, Rev. 1.05
292
Freescale
Semiconductor
NOTE
The first period after enabling the counter by APIFE might be reduced by
API start up delay t
sdel
.
It is possible to generate with the API a waveform at the external pin API_EXTCLK by setting APIFE and
enabling the external access with setting APIEA.
7.7
Initialization/Application Information
7.7.1
General Initialization Information
Usually applications run in MCU Normal Mode
.
It is recommended to write the CPMUCOP register in any case from the application program initialization
routine after reset no matter if the COP is used in the application or not, even if a configuration is loaded
via the flash memory after reset
.
By doing a “controlled” write access in MCU Normal Mode (with the
right value for the application) the write once for the COP configuration bits (WCOP,CR[2:0]) takes place
which protects these bits from further accidental change
.
In case of a program sequencing issue (code
runaway) the COP configuration can not be accidentally modified anymore
.
7.7.2
Application information for COP and API usage
In many applications the COP is used to check that the program is running and sequencing properly. Often
the COP is kept running during Stop Mode and periodic wake-up events are needed to service the COP on
time and maybe to check the system status
.
For such an application it is recommended to use the ACLK as clock source for both COP and API. This
guarantees lowest possible IDD current during Stop Mode
.
Additionally it eases software implementation
using the same clock source for both, COP and API
.
The Interrupt Service Routine (ISR) of the Autonomous Periodic Interrupt API should contain the write
instruction to the CPMUARMCOP register. The value (byte) written is derived from the “main routine”
(alternating sequence of $55 and $AA) of the application software
.
Using this method, then in the case of a runtime or program sequencing issue the application “main
routine” is not executed properly anymore and the alternating values are not provided properly. Hence the
COP is written at the correct time (due to independent API interrupt request) but the wrong value is written
(alternating sequence of $55 and $AA is no longer maintained) which causes a COP reset
.
If the COP is stopped during any Stop Mode it is recommended to service the COP shortly before Stop
Mode is entered.
7.7.3
Application Information for PLL and Oscillator Startup
The following C-code example shows a recommended way of setting up the system clock system using
the PLL and Oscillator:
Содержание MC9S12ZVHL32
Страница 21: ...S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 Freescale Semiconductor 21 PAGE INTENTIONALLY LEFT BLANK...
Страница 22: ...S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 22 Freescale Semiconductor PAGE INTENTIONALLY LEFT BLANK...
Страница 686: ...Chapter 20 ECC Generation module SRAM_ECCV1 S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 686 Freescale Semiconductor...
Страница 752: ...Chapter 22 Supply Voltage Sensor BATSV2 S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 752 Freescale Semiconductor...
Страница 774: ...Chapter 23 LIN Physical Layer S12LINPHYV2 S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 774 Freescale Semiconductor...
Страница 788: ...Appendix A MCU Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 788 Freescale Semiconductor...
Страница 794: ...Appendix B ADC Electricals S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 794 Freescale Semiconductor...
Страница 798: ...Appendix D IRC Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 798 Freescale Semiconductor...
Страница 802: ...Appendix F MSCAN Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 802 Freescale Semiconductor...
Страница 806: ...Appendix G NVM Electrical Parameters S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 806 Freescale Semiconductor...
Страница 810: ...Appendix H BATS Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 810 Freescale Semiconductor...
Страница 816: ...Appendix K OSC32K Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 816 Freescale Semiconductor...
Страница 822: ...Appendix L SPI Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 822 Freescale Semiconductor...
Страница 826: ...Appendix M LINPHY Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 826 Freescale Semiconductor...
Страница 829: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 830 Freescale Semiconductor O 1 144 LQFP...
Страница 830: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 Freescale Semiconductor 831...
Страница 831: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 832 Freescale Semiconductor...
Страница 832: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 Freescale Semiconductor 833 O 2 100 LQFP...
Страница 833: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 834 Freescale Semiconductor...
Страница 834: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 Freescale Semiconductor 835...
Страница 835: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 836 Freescale Semiconductor...