Chapter 5 Background Debug Controller (S12ZBDCV2)
S12ZVHY/S12ZVHL Family Reference Manual Rev. 1.05
Freescale Semiconductor
149
4
OVRUN
Overrun Flag
— Indicates unexpected host activity before command completion.
This occurs if a new command is received before the current command completion.
With ACK enabled this also occurs if the host drives the BKGD pin low whilst a target ACK pulse is pending
To protect internal resources from misinterpreted BDC accesses following an overrun, internal accesses are
suppressed until a SYNC clears this bit.
A SYNC clears the bit.
0 No overrun detected.
1 Overrun detected when issuing a BDC command.
3
NORESP
No Response Flag
— Indicates that the BDC internal action or data access did not complete. This occurs in the
following scenarios:
a) If no free cycle for an access is found within 512 core clock cycles. This could typically happen if a code loop
without free cycles is executing with ACK enabled and STEAL clear.
b) With ACK disabled or STEAL set, when an internal access is not complete before the host starts
data/BDCCSRL retrieval or an internal write access is not complete before the host starts the next BDC
command.
c) Attempted internal memory or SYNC_PC accesses during STOP mode set NORESP if BDCCIS is clear.
In the above cases, on setting NORESP, the BDC aborts the access if permitted. (For devices supporting
EWAIT, BDC external accesses with EWAIT assertions, prevent a command from being aborted until EWAIT
is deasserted).
d) If a BACKGROUND command is issued whilst the device is in wait mode the NORESP bit is set but the
command is not aborted. The active BDM request is completed when the device leaves wait mode.
Furthermore subsequent CPU register access commands during wait mode set the NORESP bit, should it
have been cleared.
e) If a command is issued whilst awaiting return from Wait mode. This can happen when using STEP1 to step
over a CPU WAI instruction, if the CPU has not returned from Wait mode before the next BDC command is
received.
f) If STEP1 is issued with the BDC enabled as the device enters Wait mode regardless of the BDMACT state.
When NORESP is set a value of 0xEE is returned for each data byte associated with the current access.
Writing a “1” to this bit, clears the bit.
0 Internal action or data access completed.
1 Internal action or data access did not complete.
2
RDINV
Read Data Invalid Flag
— Indicates invalid read data due to an ECC error during a BDC initiated read access.
The access returns the actual data read from the location.
Writing a “1” to this bit, clears the bit.
0 No invalid read data detected.
1 Invalid data returned during a BDC read access.
1
ILLACC
Illegal Access Flag
— Indicates an attempted illegal access. This is set in the following cases:
When the attempted access addresses unimplemented memory
When the access attempts to write to the flash array
When a CPU register access is attempted with an invalid CRN (
Illegal accesses return a value of 0xEE for each data byte
Writing a “1” to this bit, clears the bit.
0 No illegal access detected.
1 Illegal BDC access detected.
Table 5-6. BDCCSRL Field Descriptions (continued)
Field
Description
Содержание MC9S12ZVHL32
Страница 21: ...S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 Freescale Semiconductor 21 PAGE INTENTIONALLY LEFT BLANK...
Страница 22: ...S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 22 Freescale Semiconductor PAGE INTENTIONALLY LEFT BLANK...
Страница 686: ...Chapter 20 ECC Generation module SRAM_ECCV1 S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 686 Freescale Semiconductor...
Страница 752: ...Chapter 22 Supply Voltage Sensor BATSV2 S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 752 Freescale Semiconductor...
Страница 774: ...Chapter 23 LIN Physical Layer S12LINPHYV2 S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 774 Freescale Semiconductor...
Страница 788: ...Appendix A MCU Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 788 Freescale Semiconductor...
Страница 794: ...Appendix B ADC Electricals S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 794 Freescale Semiconductor...
Страница 798: ...Appendix D IRC Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 798 Freescale Semiconductor...
Страница 802: ...Appendix F MSCAN Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 802 Freescale Semiconductor...
Страница 806: ...Appendix G NVM Electrical Parameters S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 806 Freescale Semiconductor...
Страница 810: ...Appendix H BATS Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 810 Freescale Semiconductor...
Страница 816: ...Appendix K OSC32K Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 816 Freescale Semiconductor...
Страница 822: ...Appendix L SPI Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 822 Freescale Semiconductor...
Страница 826: ...Appendix M LINPHY Electrical Specifications S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 826 Freescale Semiconductor...
Страница 829: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 830 Freescale Semiconductor O 1 144 LQFP...
Страница 830: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 Freescale Semiconductor 831...
Страница 831: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 832 Freescale Semiconductor...
Страница 832: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 Freescale Semiconductor 833 O 2 100 LQFP...
Страница 833: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 834 Freescale Semiconductor...
Страница 834: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 Freescale Semiconductor 835...
Страница 835: ...Appendix O Package Information S12ZVHY S12ZVHL Family Reference Manual Rev 1 05 836 Freescale Semiconductor...