EDS-405A/408A Series User’s Manual
Featured Functions
3-42
The Traffic Prioritization Concept
What is Traffic Prioritization?
Traffic prioritization allows you to prioritize data so that time-sensitive and system-critical data
can be transferred smoothly and with minimal delay over a network. The benefits of using traffic
prioritization are:
Improve network performance by controlling a wide variety of traffic and managing
congestion.
Assign priorities to different categories of traffic. For example, set higher priorities for
time-critical or business-critical applications.
Provide predictable throughput for multimedia applications, such as video conferencing or
voice over IP, and minimize traffic delay and jitter.
Improve network performance as the amount of traffic grows. This will save cost by reducing
the need to keep adding bandwidth to the network.
How Traffic Prioritization Works
Traffic prioritization uses the four traffic queues that are present in your EDS to ensure that high
priority traffic is forwarded on a different queue from lower priority traffic. This is what provides
Quality of Service (QoS) to your network.
The EDS traffic prioritization depends on two industry-standard methods:
IEEE 802.1D
—a layer 2 marking scheme.
Differentiated Services (DiffServ)
—a layer 3 marking scheme.
IEEE 802.1D Traffic Marking
The IEEE Std 802.1D, 1998 Edition marking scheme, which is an enhancement to IEEE Std
802.1D, enables Quality of Service on the LAN. Traffic service levels are defined in the IEEE
802.1Q 4-byte tag, which is used to carry VLAN identification as well as IEEE 802.1p priority
information. The 4-byte tag immediately follows the destination MAC address and Source MAC
address.
The IEEE Std 802.1D, 1998 Edition priority marking scheme assigns an IEEE 802.1p priority
level between 0 and 7 to each frame. This determines the level of service that type of traffic should
receive. Refer to the table below
for an example of how different traffic types can be mapped to
the eight IEEE 802.1p priority levels.