109
Boxed Processor Specifications
8.2.2
Boxed Processor Heat Sink Weight
8.2.2.1
Thermal Solution Weight
The 1U passive/3U+ active combination heat sink solution and the 2U passive heat sink
solution will not exceed a mass of 1050 grams. Note that this is per processor, a dual
processor system will have up to 2010 grams total mass in the heat sinks. This large
mass will require a minimum chassis stiffness to be met in order to withstand force
during shock and vibration.
See
Chapter 3
for details on the processor weight.
8.2.3
Boxed Processor Retention Mechanism and Heat Sink
Support (CEK)
Baseboards and chassis designed for use by a system integrator should include holes
that are in proper alignment with each other to support the boxed processor. Refer to
the Server System Infrastructure Specification (SSI-EEB 3.6, TEB 2.1 or CEB 1.1).
These specification can be found at: http://www.ssiforum.org.
Figure 8-3
illustrates the Common Enabling Kit (CEK) retention solution. The CEK is
designed to extend air-cooling capability through the use of larger heat sinks with
minimal airflow blockage and bypass. CEK retention mechanisms can allow the use of
much heavier heat sink masses compared to legacy limits by using a load path directly
attached to the chassis pan. The CEK spring on the secondary side of the baseboard
provides the necessary compressive load for the thermal interface material. The
baseboard is intended to be isolated such that the dynamic loads from the heat sink are
transferred to the chassis pan via the stiff screws and standoffs. The retention scheme
reduces the risk of package pullout and solder joint failures.
All components of the CEK heat sink solution will be captive to the heat sink and will
only require a Phillips screwdriver to attach to the chassis pan. When installing the
CEK, the CEK screws should be tightened until they will no longer turn easily. This
should represent approximately 6-8 inch-pounds of torque. More than that may
damage the retention mechanism components.
8.3
Electrical Requirements
8.3.1
Fan Power Supply (Active CEK)
The 4-pin PWM controlled thermal solution is being offered to help provide better
control over pedestal chassis acoustics. This is achieved though more accurate
measurement of processor die temperature through the processor’s Digital Thermal
Sensors. Fan RPM is modulated through the use of an ASIC located on the baseboard,
that sends out a PWM control signal to the 4th pin of the connector labeled as Control.
This thermal solution requires a co12 V supplied to pin 2 of the active thermal
solution and does not support variable voltage control or 3-pin PWM control. See
Table 8-2
for details on the 4-pin active heat sink solution connectors.
If the 4-pin active fan heat sink solution is connected to an older 3-pin baseboard CPU
fan header it will default back to a thermistor controlled mode, allowing compatibility
with legacy 3-wire designs. When operating in thermistor controlled mode, fan RPM is
automatically varied based on the TINLET temperature measured by a thermistor
located at the fan inlet of the heat sink solution.
Summary of Contents for L5310 - Cpu Xeon Quad-Core Lv 1.6Ghz Fsb1066Mhz 8M Fc-Lga6 Tray
Page 1: ...318590 005 Dual Core Intel Xeon Processor 5200 Series Datasheet August 2008...
Page 8: ...8 Dual Core Intel Xeon Processor 5200 Series Datasheet...
Page 14: ...14...
Page 92: ...Thermal Specifications 92...
Page 98: ...Features 98...
Page 102: ...Boxed Processor Specifications 102 Figure 8 4 Top Side Board Keepout Zones Part 1...
Page 103: ...103 Boxed Processor Specifications Figure 8 5 Top Side Board Keepout Zones Part 2...
Page 104: ...Boxed Processor Specifications 104 Figure 8 6 Bottom Side Board Keepout Zones...
Page 105: ...105 Boxed Processor Specifications Figure 8 7 Board Mounting Hole Keepout Zones...
Page 106: ...Boxed Processor Specifications 106 Figure 8 8 Volumetric Height Keep Ins...
Page 112: ...Boxed Processor Specifications 112...