Page 89
T
5CL8
8.3.6 Programmable Pulse Generate (PPG) Output Mode
In the programmable pulse generation (PPG) mode, an arbitrary duty pulse is generated by counting per-
formed in the internal clock. To start the timer, TC1CR<TC1S> specifies either the edge of the input pulse to
the TC1 pin or the command start. TC1CR<MPPG1> specifies whether a duty pulse is produced continuously
or not (one-shot pulse).
• When TC1CR<MPPG1> is set to “0” (Continuous pulse generation)
When a match between the up-counter and the TC1DRB value is detected after the timer starts, the
level of the
PPG
pin is inverted and an INTTC1 interrupt request is generated. The up-counter contin-
ues counting. When a match between the up-counter and the TC1DRA value is detected, the level of
the
PPG
pin is inverted and an INTTC1 interrupt request is generated. The up-counter is cleared at
this time, and then continues counting and pulse generation.
When TC1S is cleared to “00” during PPG output, the
PPG
pin retains the level immediately before
the counter stops.
• When TC1CR<MPPG1> is set to “1” (One-shot pulse generation)
When a match between the up-counter and the TC1DRB value is detected after the timer starts, the
level of the
PPG
pin is inverted and an INTTC1 interrupt request is generated. The up-counter contin-
ues counting. When a match between the up-counter and the TC1DRA value is detected, the level of
the
PPG
pin is inverted and an INTTC1 interrupt request is generated. TC1CR<TC1S> is cleared to
“00” automatically at this time, and the timer stops. The pulse generated by PPG retains the same
level as that when the timer stops.
Since the output level of the
PPG
pin can be set with TC1CR<TFF1> when the timer starts, a positive or neg-
ative pulse can be generated. Since the inverted level of the timer F/F1 output level is output to the
PPG
pin,
specify TC1CR<TFF1> to “0” to set the high level to the
PPG
pin, and “1” to set the low level to the
PPG
pin.
Upon reset, the timer F/F1 is initialized to “0”.
Note 1: To change TC1DRA or TC1DRB during a run of the timer, set a value sufficiently larger than the count value
of the counter. Setting a value smaller than the count value of the counter during a run of the timer may
generate a pulse different from that specified.
Note 2: Do not change TC1CR<TFF1> during a run of the timer. TC1CR<TFF1> can be set correctly only at initial-
ization (after reset). When the timer stops during PPG, TC1CR<TFF1> can not be set correctly from this
point onward if the PPG output has the level which is inverted of the level when the timer starts. (Setting
TC1CR<TFF1> specifies the timer F/F1 to the level inverted of the programmed value.) Therefore, the
timer F/F1 needs to be initialized to ensure an arbitrary level of the PPG output. To initialize the timer F/F1,
change TC1CR<TC1M> to the timer mode (it is not required to start the timer mode), and then set the PPG
mode. Set TC1CR<TFF1> at this time.
Note 3: In the PPG mode, the following relationship must be satisfied.
TC1DRA > TC1DRB
Note 4: Set TC1DRB after changing the mode of TC1M to the PPG mode.
Summary of Contents for CEM2100/00
Page 2: ...2 ...
Page 3: ...BLOCK DIAGRAM ...
Page 4: ...WIRING DIAGRAM 4 ...
Page 5: ...CIRCUIT DIAGRAM MAIN BOARD 5 ...
Page 6: ...6 ...
Page 7: ......
Page 11: ...PCB LAYOUT MAIN BOARD TOP SIDE VIEW 11 ...
Page 12: ...PCB LAYOUT MAIN BOARD BOTTOM SIDE VIEW 12 ...
Page 13: ...PCB LAYOUT PANEL BOARD TOP SIDE VIEW ...
Page 14: ...14 PCB LAYOUT PANEL BOARD BOTTOM SIDE VIEW ...
Page 15: ...PCB LAYOUT REMOTE BOARD TOP SIDE VIEW 15 ...
Page 16: ...PCB LAYOUT REMOTE BOARD BOTTOM SIDE VIEW 16 ...
Page 17: ...PCB LAYOUT TUNER BOARD TOP SIDE VIEW 17 ...
Page 18: ...PCB LAYOUT TUNER BOARD BOTTOM SIDE VIEW 18 ...
Page 19: ...PCB LAYOUT SD BOARD TOP SIDE VIEW ...
Page 20: ...20 PCB LAYOUT CD CONNECTOR TOP SIDE VIEW ...
Page 21: ...PCB LAYOUT ISO BOARD BOTTOM SIDE VIEW 21 ...
Page 22: ...22 SET EXPLODER VIEW DRAWING ...
Page 23: ...1 of 2 CEM2100 Trouble shooting Trouble shooting Trouble shooting Trouble shooting ...
Page 33: ...7 0 6SHFLILFDWLRQ 6 VWHP EORFN GLDJUDP ...
Page 110: ...7 0 6SHFLILFDWLRQ 5HYLVLRQ KLVWRU 2 2 s u 2 u 2 7 t 2 2 2 S S 5 2 v 2 2 ...
Page 111: ...8 Bit Microcontroller TLCS 870 C Series T5CL8 ...
Page 113: ...Revision History Date Revision 2008 7 31 1 First Release ...
Page 114: ......
Page 122: ...viii ...
Page 126: ...Page 4 1 3 Block Diagram T5CL8 1 3 Block Diagram Figure 1 2 Block Diagram ...
Page 130: ...Page 8 1 4 Pin Names and Functions T5CL8 ...
Page 155: ...Page 33 T5CL8 ...
Page 156: ...Page 34 2 Operational Description 2 3 Reset Circuit T5CL8 ...
Page 186: ...Page 64 5 I O Ports 5 8 Port P7 P77 to P70 T5CL8 ...
Page 194: ...Page 72 6 Watchdog Timer WDT 6 3 Address Trap T5CL8 ...
Page 214: ...Page 92 8 16 Bit TimerCounter 1 TC1 8 3 Function T5CL8 ...
Page 270: ...Page 148 12 Asynchronous Serial interface UART1 12 9 Status Flag T5CL8 ...
Page 280: ...Page 158 13 Asynchronous Serial interface UART2 13 9 Status Flag T5CL8 ...
Page 332: ...Page 210 16 Serial Bus Interface I2C Bus Ver D SBI 16 6 Data Transfer of I2C Bus T5CL8 ...
Page 342: ...Page 220 17 10 bit AD Converter ADC 17 6 Precautions about AD Converter T5CL8 ...
Page 354: ...Page 232 19 Flash Memory 19 4 Access to the Flash Memory Area T5CL8 ...
Page 388: ...Page 266 21 Input Output Circuit 21 2 Input Output Ports T5CL8 ...
Page 397: ...Page 275 T5CL8 23 Package Dimensions LQFP64 P 1010 0 50D Rev 01 Unit mm ...
Page 398: ...Page 276 23 Package Dimensions T5CL8 ...
Page 400: ......
Page 428: ...TC94B14MFG 2010 01 12 28 Package LQFP80 P 1212 0 50F Weight 0 6 g Typical ...