![Philips CEM2100/00 Service Manual Download Page 142](http://html.mh-extra.com/html/philips/cem2100-00/cem2100-00_service-manual_288205142.webp)
Page 20
2. Operational Description
2.2 System Clock Controller
T
5CL8
STOP mode is released by the following sequence.
1. In the dual-clock mode, when returning to NORMAL2, both the high-frequency and low-
frequency clock oscillators are turned on; when returning to SLOW1 mode, only the low-
frequency clock oscillator is turned on. In the single-clock mode, only the high-frequency
clock oscillator is turned on.
2. A warm-up period is inserted to allow oscillation time to stabilize. During warm up, all
internal operations remain halted. Four different warm-up times can be selected with the
SYSCR1<WUT> in accordance with the resonator characteristics.
3. When the warm-up time has elapsed, normal operation resumes with the instruction follow-
ing the STOP mode start instruction.
Note 1: When the STOP mode is released, the start is made after the prescaler and the divider of the
timing generator are cleared to "0".
Note 2: STOP mode can also be released by inputting low level on the
RESET
pin, which immediately
performs the normal reset operation.
Note 3: When STOP mode is released with a low hold voltage, the following cautions must be observed.
The power supply voltage must be at the operating voltage level before releasing STOP mode.
The
RESET
pin input must also be “H” level, rising together with the power supply voltage. In this
case, if an external time constant circuit has been connected, the
RESET
pin input voltage will
increase at a slower pace than the power supply voltage. At this time, there is a danger that a
reset may occur if input voltage level of the
RESET
pin drops below the non-inverting high-level
input voltage (Hysteresis input).
Note 1: The warm-up time is obtained by dividing the basic clock by the divider. Therefore, the warm-up
time may include a certain amount of error if there is any fluctuation of the oscillation frequency
when STOP mode is released. Thus, the warm-up time must be considered as an approximate
value.
Table 2-2 Warm-up Time Example (at fc = 16.0 MHz, fs = 32.768 kHz)
WUT
Warm-up Time [ms]
Return to NORMAL Mode
Return to SLOW Mode
00
01
10
11
12.288
4.096
3.072
1.024
750
250
5.85
1.95
Summary of Contents for CEM2100/00
Page 2: ...2 ...
Page 3: ...BLOCK DIAGRAM ...
Page 4: ...WIRING DIAGRAM 4 ...
Page 5: ...CIRCUIT DIAGRAM MAIN BOARD 5 ...
Page 6: ...6 ...
Page 7: ......
Page 11: ...PCB LAYOUT MAIN BOARD TOP SIDE VIEW 11 ...
Page 12: ...PCB LAYOUT MAIN BOARD BOTTOM SIDE VIEW 12 ...
Page 13: ...PCB LAYOUT PANEL BOARD TOP SIDE VIEW ...
Page 14: ...14 PCB LAYOUT PANEL BOARD BOTTOM SIDE VIEW ...
Page 15: ...PCB LAYOUT REMOTE BOARD TOP SIDE VIEW 15 ...
Page 16: ...PCB LAYOUT REMOTE BOARD BOTTOM SIDE VIEW 16 ...
Page 17: ...PCB LAYOUT TUNER BOARD TOP SIDE VIEW 17 ...
Page 18: ...PCB LAYOUT TUNER BOARD BOTTOM SIDE VIEW 18 ...
Page 19: ...PCB LAYOUT SD BOARD TOP SIDE VIEW ...
Page 20: ...20 PCB LAYOUT CD CONNECTOR TOP SIDE VIEW ...
Page 21: ...PCB LAYOUT ISO BOARD BOTTOM SIDE VIEW 21 ...
Page 22: ...22 SET EXPLODER VIEW DRAWING ...
Page 23: ...1 of 2 CEM2100 Trouble shooting Trouble shooting Trouble shooting Trouble shooting ...
Page 33: ...7 0 6SHFLILFDWLRQ 6 VWHP EORFN GLDJUDP ...
Page 110: ...7 0 6SHFLILFDWLRQ 5HYLVLRQ KLVWRU 2 2 s u 2 u 2 7 t 2 2 2 S S 5 2 v 2 2 ...
Page 111: ...8 Bit Microcontroller TLCS 870 C Series T5CL8 ...
Page 113: ...Revision History Date Revision 2008 7 31 1 First Release ...
Page 114: ......
Page 122: ...viii ...
Page 126: ...Page 4 1 3 Block Diagram T5CL8 1 3 Block Diagram Figure 1 2 Block Diagram ...
Page 130: ...Page 8 1 4 Pin Names and Functions T5CL8 ...
Page 155: ...Page 33 T5CL8 ...
Page 156: ...Page 34 2 Operational Description 2 3 Reset Circuit T5CL8 ...
Page 186: ...Page 64 5 I O Ports 5 8 Port P7 P77 to P70 T5CL8 ...
Page 194: ...Page 72 6 Watchdog Timer WDT 6 3 Address Trap T5CL8 ...
Page 214: ...Page 92 8 16 Bit TimerCounter 1 TC1 8 3 Function T5CL8 ...
Page 270: ...Page 148 12 Asynchronous Serial interface UART1 12 9 Status Flag T5CL8 ...
Page 280: ...Page 158 13 Asynchronous Serial interface UART2 13 9 Status Flag T5CL8 ...
Page 332: ...Page 210 16 Serial Bus Interface I2C Bus Ver D SBI 16 6 Data Transfer of I2C Bus T5CL8 ...
Page 342: ...Page 220 17 10 bit AD Converter ADC 17 6 Precautions about AD Converter T5CL8 ...
Page 354: ...Page 232 19 Flash Memory 19 4 Access to the Flash Memory Area T5CL8 ...
Page 388: ...Page 266 21 Input Output Circuit 21 2 Input Output Ports T5CL8 ...
Page 397: ...Page 275 T5CL8 23 Package Dimensions LQFP64 P 1010 0 50D Rev 01 Unit mm ...
Page 398: ...Page 276 23 Package Dimensions T5CL8 ...
Page 400: ......
Page 428: ...TC94B14MFG 2010 01 12 28 Package LQFP80 P 1212 0 50F Weight 0 6 g Typical ...