background image

Subject to change without notice

6

General Information

be followed by the user to ensure safe operation and to retain
the oscilloscope in a safe condition.

The case, chassis and all measuring terminals are connected
to the protective earth contact of the appliance inlet. The
instrument operates according to Safety Class I (three-
conductor power cord with protective earthing conductor and
a plug with earthing contact).

The mains/line plug shall only be inserted in a socket outlet
provided with a protective earth contact. The protective
action must not be negated by the use of an extension cord
without a protective conductor.

The mains/line plug must be inserted before connec-
tions are made to measuring circuits.

The grounded accessible metal parts (case, sockets, jacks)
and the mains/line supply contacts (line/live, neutral) of the
instrument have been tested against insulation breakdown
with 2200V DC.

Under certain conditions, 50Hz or 60Hz hum voltages can
occur in the measuring circuit due to the interconnection with
other mains/line powered equipment or instruments. This can
be avoided by using an isolation transformer (Safety Class II)
between the mains/line outlet and the power plug of the
device being investigated. Most cathode-ray tubes develop X-
rays. However, the dose equivalent rate falls far below the
maximum permissible value of 36pA/kg (0.5mR/h).

Whenever it is likely that protection has been impaired, the
instrument shall be made inoperative and be secured against
any unintended operation. The protection is likely to be
impaired if, for example, the instrument

• shows visible damage,
• fails to perform the intended measurements,
• has been subjected to prolonged storage under unfavorable

conditions (e.g. in the open or in moist environments),

• has been subject to severe transport stress (e.g. in poor

packaging).

Intended purpose and operating conditions

This instrument must be used only by qualified experts who
are aware of the risks of electrical measurement. The ins-
trument is specified for operation in industry, light industry,
commercial and residential environments.

Due to safety reasons the instrument must only be connected
to a properly installed power outlet, containing a protective
earth conductor. The protective earth connection must not be
broken. The power plug must be inserted in the power outlet
while any connection is made to the test device.

The instrument has been designed for indoor use. The
permissible ambient temperature range during operation is
+10°C (+50°F) ... +40°C (+104°F). It may occasionally be
subjected to temperatures b10°C (+50°F) and -10°C
(+14°F) without degrading its safety. The permissible ambient
temperature range for storage or transportation is -40°C (-
40°F) ... +70°C (+158°F). The maximum operating altitude is
up to 2200m (non-operating 15000m). The maximum relative
humidity is up to 80%.

If condensed water exists in the instrument it should be
acclimatized before switching on. In some cases (e.g.
extremely cold oscilloscope) two hours should be allowed

General Information

This oscilloscope is easy to operate. The logical arrangement
of the controls allows anyone to quickly become familiar with
the operation of the instrument, however, experienced users
are also advised to read through these instructions so that all
functions are understood.

Immediately after unpacking, the instrument should be
checked for mechanical damage and loose parts in the interior.
If there is transport damage, the supplier must be informed
immediately. The instrument must then not be put into
operation.

Symbols

ATTENTION - refer to manual

Danger - High voltage

Protective ground (earth) terminal

Use of tilt handle

To view the screen from the best angle, there are three
different positions (C, D, E) for setting up the instrument. If
the instrument is set down on the floor after being carried,
the handle automatically remains in the upright carrying
position (A). In order to place the instrument onto a horizontal
surface, the handle should be turned to the upper side of the
oscilloscope (C). For the D position (10° inclination), the handle
should be turned to the opposite direction of the carrying
position until it locks in place automatically underneath the
instrument. For the E position (20° inclination), the handle
should be pulled to release it from the D position and swing
backwards until it locks once more. The handle may also be
set to a position for horizontal carrying by turning it to the
upper side to lock in the B position. At the same time, the
instrument must be lifted, because otherwise the handle will
jump back.

Safety

This instrument has been designed and tested in accordance
with IEC Publication 1010-1 (overvoltage category II, pollution
degree 2), Safety requirements for electrical equipment for
measurement, control, and laboratory use. The CENELEC
regulations EN 61010-1 correspond to this standard. It has
left the factory in a safe condition. This instruction manual
contains important information and warnings which have to

Summary of Contents for HM404-2.02

Page 1: ...Instruments HANDBUCH MANUAL MANUEL Oscilloscope HM404 2 02 ENGLISH...

Page 2: ...MANUAL HANDBUCH MANUEL...

Page 3: ...fference measurement in DUAL mode Yt 23 Phase difference measurement in DUAL mode 23 Measurement of an amplitude modulation 23 Triggering and time base 24 Automatic Peak value Triggering 24 Normal Tri...

Page 4: ...ia the device under test mains line supply test leads control cables and or radiation The device under test as well as the oscilloscope may be effected by such fields Although the interior of the osci...

Page 5: ...0cm internal graticule Acceleration voltage approx 2000V Trace rotation adjustable on front panel Z Input Intens modulation max 5V TTL Calibrator 0 2V 1 1kHz 1MHz tr 4ns Line voltage 100 240V AC 10 50...

Page 6: ...The instrument has been designed for indoor use The permissible ambient temperature range during operation is 10 C 50 F 40 C 104 F It may occasionally be subjected to temperatures between 10 C 50 F an...

Page 7: ...nts The oscilloscope can be operated in any position but the convection cooling must not be impaired The ventilation holes may not be covered For continuous operation the instrument should be used in...

Page 8: ...upling The input coupling is selectable by the AC DC pushbutton The actual setting is displayed in the readout with the symbol for DC and the symbol for AC coupling Amplitude Measurements In general e...

Page 9: ...example only the residual ripple of a high voltage is to be displayed on the oscilloscope a normal x10 probe is sufficient In this case an appropriate high voltage capacitor approx 22 68nF must be co...

Page 10: ...lse and calculation is unnecessary Calculation of the example in the figure above results in a signal risetime tr 162 8 752 22 13 25ns The measurement of the rise or fall time is not limited to the tr...

Page 11: ...intain the nominal output voltage independent of frequency only if their connection cable is terminated with the prescribed resistance Here it must be noted that the terminating resistor HZ22 will onl...

Page 12: ...ive If the instrument is set to XY mode this control knob is inactive and the X POS knob must be used for a horizontal position shift DC voltage measurement If no signal is applied at the INPUT CHI 26...

Page 13: ...trigger mode is automatically activated or not depends on the trigger coupling setting TRIG MODE The way the trigger point symbol in the readout responds on different LEVEL control knob settings indic...

Page 14: ...control knob function between attenuator and vernier variable The current setting is displayed by the VAR LED located above the knob After switching the VAR LED 15 on the deflection coefficient is st...

Page 15: ...the readout instead of CHP In alternate trigger mode the trigger point symbol is switched off Alternate triggering is not available or automatically switched off under the following conditions ADD add...

Page 16: ...switch when the VAR LED above it is not lit Then the time deflection coefficient can be set in a 1 2 5 sequence and the time base is calibrated Rotating anticlockwise increases the deflection coeffic...

Page 17: ...ains calibrated until the vernier knob is operated The readout now indicates T instead of T Rotating further anticlockwise increases the time deflection coefficient uncalibrated until the maximum is r...

Page 18: ...afety earth contact of the line mains plug The input impedance is approx 1M II 20pF TRIG EXT This BNC socket is the external trigger signal input if external triggering is selected Briefly pressing th...

Page 19: ...upted dotted line indicates the inactive cursor V t Pressing and holding this pushbutton changes from voltage to time or frequency measurement and vice versa In XY mode the instrument is automatically...

Page 20: ...s MISCELLANEOUS and FACTORY 1 2 1 MISCELLANEOUS contains 1 2 1 1 CONTROL BEEP ON OFF In OFF condition the acoustic signals actuated by the control limits are switched off Note The default setting is O...

Page 21: ...xtremely short ground connections which are essential for an undistorted waveform reproduction of non sinusoidal high frequency signals Adjustment at 1kHz The C trimmer adjustment low frequency compen...

Page 22: ...deflects the beam in vertical direction while the time base causes an X deflection from left to right at the same time Thereafter the beam becomes blanked and fly back occurs The following Yt operati...

Page 23: ...ng or lagging phase angle In alternate triggering condition phase difference measurement is not possible For greatest accuracy adjust the time base for slightly over one period and approximately the s...

Page 24: ...l triggering Automatic Peak Value Triggering Instrument specific information can be drawn from the items NM AT 10 and LEVEL 12 in the section Controls and Readout This trigger mode is automatically se...

Page 25: ...f the trigger signal and the lowest frequency range DC In this coupling mode the trigger signal is coupled galvanically to the trigger unit if normal triggering NM is present Therefore there is no low...

Page 26: ...connected to a BNC connector for scope input via a shielded cable Between cable and BNC center conductor a resistor of at least 100 should be series connected RF decoupling Often it is advisable to sh...

Page 27: ...se the holdoff control should be reset into its calibration detent fully ccw otherwise the brightness of the display is reduced drastically The function is shown in the following figures Fig 1 shows a...

Page 28: ...search operation Photo 3 MODE DEL DELAY TIME DIV 5ms div Trigger coupling TV F Trigger slope falling Delay time 20ms Reducing the time coefficient increasing the time base speed now expands the signa...

Page 29: ...to the lower half of the CRT The 1mV div and 2mV div deflection coefficient will not be selected by AUTO SET as the bandwidth is reduced on these settings Attention If a signal is applied with a pulse...

Page 30: ...or under test With high values of resistance the slope will tend towards the horizontal axis and with low values the slope will move towards the vertical axis Values of resistance from 20 to 4 7k can...

Page 31: ...luding probes between oscilloscope and circuit under test Otherwise both COMPONENT TESTER leads are not isolated against the circuit under test In circuit tests are possible in many cases However they...

Page 32: ...cable length must be less then 3 meters and must contain 9 screened lines connected 1 1 The oscilloscope RS232 connection 9 pole D SUB female is determined as follows Pin 2 Tx data data from oscillos...

Page 33: ...33 Subject to change without notice Front Panel HM404 2...

Page 34: ...Subject to change without notice 34...

Page 35: ...MANUAL HANDBUCH MANUEL...

Page 36: ...uk Spain HAMEG S L Villarroel 172 174 08036 BARCELONA Tel f 93 4301597 Telefax 93 321220 E mail email hameg es France HAMEG S a r l 5 9 av de la R publique 94800 VILLEJUIF T l 1 4677 8151 Telefax 1 4...

Reviews: