background image

11

Subject to change without notice

They should be as short and thick as possible. When the
attenuator probe is connected to a BNC-socket, a BNC-
adapter, should be used. In this way ground and matching
problems are eliminated. Hum or interference appearing in
the measuring circuit (especially when a small deflection
coefficient is used) is possibly caused by multiple grounding
because equalizing currents can flow in the shielding of the
test cables (voltage drop between the protective conductor
connections, caused by external equipment connected to the
mains/line, e.g. signal generators with interference protection
capacitors).

Controls and Readout

The following description assumes that the operating
mode ”COMPONENT TEST” is switched off.

All important measuring parameter settings are display-
ed in the screen Readout when the oscilloscope is on.

The LED indicators on the large front panel facilitate operation
and provide additional information. Electrical end positions of
controls are indicated by acoustic signal (beep).

All controls, except the power switch (

POWER

), the calibration

frequency pushbutton (

CAL. 1kHz/1MHz

), the

 FOCUS

 control

and the trace rotation control, are electronically set and
interrogated. Thus, all electronically set functions and their
current settings can be stored and also remotely controlled.

The large front panel is, as is usual with Hameg oscilloscopes,
marked with several fields.

The following controls and LED indicators are located
on the top, to the right of the screen, above the horizon-
tal line:

(1) POWER

Pushbutton and symbols for 

ON (I)

 and 

OFF (O)

.

After the oscilloscope is switched on, all LEDs are lit and
an automated instrument test is performed. During this
time the 

HAMEG

 logo and the software version are

displayed on the screen. After the internal test is
completed succesfully, the overlay is switched off and
the normal operation mode is present. Then the last used
settings become activated and one LED indicates the
ON condition.

 (2) AUTO SET

Briefly depressing this pushbutton results in an automatic
instrument setting automatically selecting Yt mode. The
instrument is set to the last used Yt mode setting (

CH I,

CH II 

or

 DUAL). SEARCH (SEA) 

and

 DELAY (DEL 

and

DTR) 

mode is automatically switched off.

 Please note

”AUTO SET”

.

Automatic

 CURSOR 

supported voltage measurement:

If 

CURSOR 

voltage measurement is present, the CURSOR

lines are automatically set to the positive and negative
peak value of the signal. The accuracy of this function
decreases with higher frequencies and is also influenced

Controls and Readout

When using a 50

 cable such as the

 HZ34

, a 50

 through

termination type

 HZ22 

is available from

 HAMEG

. When

transmitting square signals with short rise times, transient
phenomena on the edges and top of the signal may become
visible if the correct termination is not used. A terminating
resistance is sometimes recommended with sine signals as
well. Certain amplifiers, generators or their attenuators maintain
the nominal output voltage independent of frequency only if
their connection cable is terminated with the prescribed
resistance. Here it must be noted that the terminating resistor

HZ22 

will only dissipate a maximum of 2Watts. This power is

reached with 10Vrms or  at 28.3Vpp with sine signal. If a x10
or x100 attenuator probe is used, no termination is necessary.
In this case, the connecting cable is matched directly to the high
impedance input of the oscilloscope. When using attenuators
probes, even high internal impedance sources are only slightly
loaded (approx. 10M

 II 12pF or 100M

 II 5pF with

 HZ53

).

Therefore, if the voltage loss due to the attenuation of the
probe can be compensated by a higher amplitude setting, the
probe should always be used. The series impedance of the
probe provides a certain amount of protection for the input of
the vertical amplifier. Because of their separate manufacture,
all attenuator probes are only partially compensated, therefore
accurate compensation must be performed on the oscilloscope
(see Probe compensation ).

Standard attenuator probes on the oscilloscope normally
reduce its bandwidth and increase the rise time. In all cases
where the oscilloscope bandwidth must be fully utilized (e.g.
for pulses with steep edges) we strongly advise using the
probes

 HZ51 

(x10)

 HZ52 

(x10 HF) and

 HZ54  

(x1 and x10). This

can save the purchase of an oscilloscope with larger bandwidth.

The probes mentioned have a HF-calibration in addition to low
frequency calibration adjustment. Thus a group delay correction
to the upper limit frequency of the oscilloscope is possible
with the aid of an 1MHz calibrator, e.g.

 HZ60

.

In fact the bandwidth and rise time of the oscilloscope are not
noticably changed with these probe types and the waveform
reproduction fidelity can even be improved because the probe
can be matched to the oscilloscopes individual pulse response.

If a x10 or x100 attenuator probe is used, DC input
coupling must always be used at voltages above 400V.
With AC coupling of low frequency signals, the attenu-
ation is no longer independent of frequency, pulses
can show pulse tilts. Direct voltages are suppressed
but load the oscilloscope input coupling capacitor
concerned. Its voltage rating is max. 400 V (DC + peak
AC). DC input coupling is therefore of quite special
importance with a x100 attenuation probe which usu-
ally has a voltage rating of max. 1200 V (DC + peak AC).
A capacitor of corresponding capacitance and voltage
rating may be connected in series with the attenuator
probe input for blocking DC voltage (e.g. for hum
voltage measurement).

With all attenuator probes, the maximum AC input voltage
must be derated with frequency usually above 20kHz.
Therefore the derating curve of the attenuator probe type
concerned must be taken into account.

The selection of the ground point on the test object is
important when displaying small signal voltages. It should
always be as close as possible to the measuring point. If this
is not done, serious signal distortion may result from spurious
currents through the ground leads or chassis parts. The
ground leads on attenuator probes are also particularly critical.

Summary of Contents for HM404-2.02

Page 1: ...Instruments HANDBUCH MANUAL MANUEL Oscilloscope HM404 2 02 ENGLISH...

Page 2: ...MANUAL HANDBUCH MANUEL...

Page 3: ...fference measurement in DUAL mode Yt 23 Phase difference measurement in DUAL mode 23 Measurement of an amplitude modulation 23 Triggering and time base 24 Automatic Peak value Triggering 24 Normal Tri...

Page 4: ...ia the device under test mains line supply test leads control cables and or radiation The device under test as well as the oscilloscope may be effected by such fields Although the interior of the osci...

Page 5: ...0cm internal graticule Acceleration voltage approx 2000V Trace rotation adjustable on front panel Z Input Intens modulation max 5V TTL Calibrator 0 2V 1 1kHz 1MHz tr 4ns Line voltage 100 240V AC 10 50...

Page 6: ...The instrument has been designed for indoor use The permissible ambient temperature range during operation is 10 C 50 F 40 C 104 F It may occasionally be subjected to temperatures between 10 C 50 F an...

Page 7: ...nts The oscilloscope can be operated in any position but the convection cooling must not be impaired The ventilation holes may not be covered For continuous operation the instrument should be used in...

Page 8: ...upling The input coupling is selectable by the AC DC pushbutton The actual setting is displayed in the readout with the symbol for DC and the symbol for AC coupling Amplitude Measurements In general e...

Page 9: ...example only the residual ripple of a high voltage is to be displayed on the oscilloscope a normal x10 probe is sufficient In this case an appropriate high voltage capacitor approx 22 68nF must be co...

Page 10: ...lse and calculation is unnecessary Calculation of the example in the figure above results in a signal risetime tr 162 8 752 22 13 25ns The measurement of the rise or fall time is not limited to the tr...

Page 11: ...intain the nominal output voltage independent of frequency only if their connection cable is terminated with the prescribed resistance Here it must be noted that the terminating resistor HZ22 will onl...

Page 12: ...ive If the instrument is set to XY mode this control knob is inactive and the X POS knob must be used for a horizontal position shift DC voltage measurement If no signal is applied at the INPUT CHI 26...

Page 13: ...trigger mode is automatically activated or not depends on the trigger coupling setting TRIG MODE The way the trigger point symbol in the readout responds on different LEVEL control knob settings indic...

Page 14: ...control knob function between attenuator and vernier variable The current setting is displayed by the VAR LED located above the knob After switching the VAR LED 15 on the deflection coefficient is st...

Page 15: ...the readout instead of CHP In alternate trigger mode the trigger point symbol is switched off Alternate triggering is not available or automatically switched off under the following conditions ADD add...

Page 16: ...switch when the VAR LED above it is not lit Then the time deflection coefficient can be set in a 1 2 5 sequence and the time base is calibrated Rotating anticlockwise increases the deflection coeffic...

Page 17: ...ains calibrated until the vernier knob is operated The readout now indicates T instead of T Rotating further anticlockwise increases the time deflection coefficient uncalibrated until the maximum is r...

Page 18: ...afety earth contact of the line mains plug The input impedance is approx 1M II 20pF TRIG EXT This BNC socket is the external trigger signal input if external triggering is selected Briefly pressing th...

Page 19: ...upted dotted line indicates the inactive cursor V t Pressing and holding this pushbutton changes from voltage to time or frequency measurement and vice versa In XY mode the instrument is automatically...

Page 20: ...s MISCELLANEOUS and FACTORY 1 2 1 MISCELLANEOUS contains 1 2 1 1 CONTROL BEEP ON OFF In OFF condition the acoustic signals actuated by the control limits are switched off Note The default setting is O...

Page 21: ...xtremely short ground connections which are essential for an undistorted waveform reproduction of non sinusoidal high frequency signals Adjustment at 1kHz The C trimmer adjustment low frequency compen...

Page 22: ...deflects the beam in vertical direction while the time base causes an X deflection from left to right at the same time Thereafter the beam becomes blanked and fly back occurs The following Yt operati...

Page 23: ...ng or lagging phase angle In alternate triggering condition phase difference measurement is not possible For greatest accuracy adjust the time base for slightly over one period and approximately the s...

Page 24: ...l triggering Automatic Peak Value Triggering Instrument specific information can be drawn from the items NM AT 10 and LEVEL 12 in the section Controls and Readout This trigger mode is automatically se...

Page 25: ...f the trigger signal and the lowest frequency range DC In this coupling mode the trigger signal is coupled galvanically to the trigger unit if normal triggering NM is present Therefore there is no low...

Page 26: ...connected to a BNC connector for scope input via a shielded cable Between cable and BNC center conductor a resistor of at least 100 should be series connected RF decoupling Often it is advisable to sh...

Page 27: ...se the holdoff control should be reset into its calibration detent fully ccw otherwise the brightness of the display is reduced drastically The function is shown in the following figures Fig 1 shows a...

Page 28: ...search operation Photo 3 MODE DEL DELAY TIME DIV 5ms div Trigger coupling TV F Trigger slope falling Delay time 20ms Reducing the time coefficient increasing the time base speed now expands the signa...

Page 29: ...to the lower half of the CRT The 1mV div and 2mV div deflection coefficient will not be selected by AUTO SET as the bandwidth is reduced on these settings Attention If a signal is applied with a pulse...

Page 30: ...or under test With high values of resistance the slope will tend towards the horizontal axis and with low values the slope will move towards the vertical axis Values of resistance from 20 to 4 7k can...

Page 31: ...luding probes between oscilloscope and circuit under test Otherwise both COMPONENT TESTER leads are not isolated against the circuit under test In circuit tests are possible in many cases However they...

Page 32: ...cable length must be less then 3 meters and must contain 9 screened lines connected 1 1 The oscilloscope RS232 connection 9 pole D SUB female is determined as follows Pin 2 Tx data data from oscillos...

Page 33: ...33 Subject to change without notice Front Panel HM404 2...

Page 34: ...Subject to change without notice 34...

Page 35: ...MANUAL HANDBUCH MANUEL...

Page 36: ...uk Spain HAMEG S L Villarroel 172 174 08036 BARCELONA Tel f 93 4301597 Telefax 93 321220 E mail email hameg es France HAMEG S a r l 5 9 av de la R publique 94800 VILLEJUIF T l 1 4677 8151 Telefax 1 4...

Reviews: