background image

Subject to change without notice

22

Operating modes of the vertical amplifiers in Yt mode

have to be adjusted such that the beginning of the pulse is as
straight as possible. Overshoot or excessive rounding are
unacceptable. The adjustment is relatively easy if only one
adjusting point is present. In case of several adjusting points
the adjustment is slightly more difficult, but causes a better
result. The rising edge should be as steep as possible, with a
pulse top remaining as straight and horizontal as possible.

After completion of the HF-adjustment, the signal amplitude
displayed on the CRT screen should have the same value as
during the 1kHz adjustment.

Probes other than those mentioned above, normally have a
larger tip diameter and may not fit into the calibrator output.
Whilst it is not difficult for an experienced operator to build a
suitable adapter, it should be pointed out that most of these
probes have a slower risetime with the effect that the total
bandwidth of scope together with probe may fall far below
that of the oscilloscope. Furthermore, the HF-adjustment
feature is nearly always missing so that waveform distortion
can not be entirely excluded. The adjustment sequence must
be followed in the order described, i.e. first at 1kHz, then at
1MHz. The calibrator frequencies should not be used for time
base calibration. The pulse duty cycle deviates from 1:1 ratio.

Prerequisites for precise and easy probe adjustments, as well
as checks of deflection coefficients, are straight horizontal
pulse tops, calibrated pulse amplitude, and zero-potential at
the pulse base. Frequency and duty cycle are relatively
uncritical. For interpretation of transient response, fast pulse
risetimes and low-impedance generator outputs are of
particular importance.

Providing these essential features, as well as switch-selectable
output-frequencies, the calibrator of the instrument can,
under certain conditions, replace expensive squarewave
generators when testing or compensating wideband-
attenuators or -amplifiers. In such a case, the input of an
appropriate circuit will be connected to the

 CAL.

-output via a

suitable probe.

The voltage provided at a high-impedance input (1M

 II 15-

30pF) will correspond to the division ratio of the probe used
(10:1 = 20mVpp output). Suitable probes are

 HZ51

,

 52

, and 

54

.

Operating modes of the vertical

amplifiers in Yt mode.

The most important controls regarding the operation modes
of the vertical amplifiers are the pushbuttons:

 CHI (16)

,

 DUAL

(17) 

and

 CH II (20)

. Their functions are described in the

section ”Controls and Readout”.

In most cases oscilloscopes are used to display signals in Yt
mode. Then the signal amplitude deflects the beam in vertical
direction while the time base causes an X deflection (from left
to right) at the same time. Thereafter the beam becomes
blanked and fly back occurs.

The following Yt operation modes are available:

Single channel operation of channel I (Mono CH I).

Single channel operation of channel II (Mono CH II).
Two channel operation of channel I and channel II (DUAL).
Two channel operation of channel I and channel II -displaying
the algebraic result as the sum or difference - (ADD).

The way the channel switching is determined in

 DUAL 

mode

depends on the time base setting and is described in the
section ”Controls and Readout”.

In

 ADD 

mode the signals of both channels are algebraically

added and displayed as one signal. Whether the resulting
display shows the sum  or difference is dependent on the
phase relationship or the polarity of the signals and on the
invert function.

In

 ADD 

mode the following combinations are possible for

In-phase input voltages:

    Channel II invert function inactive = sum.
    Channel II invert function active = difference.

Antiphase input voltages:

    Channel II invert function inactive = difference.
    Channel II invert function active = sum.

In the

 ADD 

mode the vertical display position is dependent

upon the

 Y-POS. 

setting of both channels. The same Y

deflection coefficient is normally used for both channels with
algebraic addition.

Please note that the Y-POS. settings are also added but
are not affected by the INV setting.

Differential measurement techniques allow direct measure-
ment of the voltage drop across floating components (both
ends above ground). Two identical probes should be used for
both vertical inputs. In order to avoid ground loops, use a
separate ground connection and do not use the probe ground
leads or cable shields.

X-Y Operation

The important control  for this mode is the pushbutton labeled

DUAL

 and 

XY 

 

(17)

.

In

 XY 

mode the time base is deactivated. The signal applied

to the input of channel I - front panel marking

 HOR. INP. (X)

- causes the X deflection. The input related controls (

AC/DC

,

GD 

pushbutton and the

 VOLTS/DIV 

knob) consequently

affect the X deflection. For X position alteration, the

 X-POS.

control knob must be used, as the

 Y-POS. I 

control is

automatically inactivated. The input deflection coefficient
ranges are the same for both channels, because the

 X x10

magnifier is inactive in

 XY 

mode.

The bandwidth of the X amplifier, is lower than the Y amplifier
and the phase angle which increases with higher frequencies,
must be taken into account (please note data sheet).

  The inversion of the X-input signal is not possible.

Lissajous figures can be displayed in the X-Y mode for certain
measuring tasks:

Comparing two signals of different frequency or bringing
one frequency up to the frequency of the other signal. This
also applies for whole number multiples or fractions of the
one signal frequency.

Summary of Contents for HM404-2.02

Page 1: ...Instruments HANDBUCH MANUAL MANUEL Oscilloscope HM404 2 02 ENGLISH...

Page 2: ...MANUAL HANDBUCH MANUEL...

Page 3: ...fference measurement in DUAL mode Yt 23 Phase difference measurement in DUAL mode 23 Measurement of an amplitude modulation 23 Triggering and time base 24 Automatic Peak value Triggering 24 Normal Tri...

Page 4: ...ia the device under test mains line supply test leads control cables and or radiation The device under test as well as the oscilloscope may be effected by such fields Although the interior of the osci...

Page 5: ...0cm internal graticule Acceleration voltage approx 2000V Trace rotation adjustable on front panel Z Input Intens modulation max 5V TTL Calibrator 0 2V 1 1kHz 1MHz tr 4ns Line voltage 100 240V AC 10 50...

Page 6: ...The instrument has been designed for indoor use The permissible ambient temperature range during operation is 10 C 50 F 40 C 104 F It may occasionally be subjected to temperatures between 10 C 50 F an...

Page 7: ...nts The oscilloscope can be operated in any position but the convection cooling must not be impaired The ventilation holes may not be covered For continuous operation the instrument should be used in...

Page 8: ...upling The input coupling is selectable by the AC DC pushbutton The actual setting is displayed in the readout with the symbol for DC and the symbol for AC coupling Amplitude Measurements In general e...

Page 9: ...example only the residual ripple of a high voltage is to be displayed on the oscilloscope a normal x10 probe is sufficient In this case an appropriate high voltage capacitor approx 22 68nF must be co...

Page 10: ...lse and calculation is unnecessary Calculation of the example in the figure above results in a signal risetime tr 162 8 752 22 13 25ns The measurement of the rise or fall time is not limited to the tr...

Page 11: ...intain the nominal output voltage independent of frequency only if their connection cable is terminated with the prescribed resistance Here it must be noted that the terminating resistor HZ22 will onl...

Page 12: ...ive If the instrument is set to XY mode this control knob is inactive and the X POS knob must be used for a horizontal position shift DC voltage measurement If no signal is applied at the INPUT CHI 26...

Page 13: ...trigger mode is automatically activated or not depends on the trigger coupling setting TRIG MODE The way the trigger point symbol in the readout responds on different LEVEL control knob settings indic...

Page 14: ...control knob function between attenuator and vernier variable The current setting is displayed by the VAR LED located above the knob After switching the VAR LED 15 on the deflection coefficient is st...

Page 15: ...the readout instead of CHP In alternate trigger mode the trigger point symbol is switched off Alternate triggering is not available or automatically switched off under the following conditions ADD add...

Page 16: ...switch when the VAR LED above it is not lit Then the time deflection coefficient can be set in a 1 2 5 sequence and the time base is calibrated Rotating anticlockwise increases the deflection coeffic...

Page 17: ...ains calibrated until the vernier knob is operated The readout now indicates T instead of T Rotating further anticlockwise increases the time deflection coefficient uncalibrated until the maximum is r...

Page 18: ...afety earth contact of the line mains plug The input impedance is approx 1M II 20pF TRIG EXT This BNC socket is the external trigger signal input if external triggering is selected Briefly pressing th...

Page 19: ...upted dotted line indicates the inactive cursor V t Pressing and holding this pushbutton changes from voltage to time or frequency measurement and vice versa In XY mode the instrument is automatically...

Page 20: ...s MISCELLANEOUS and FACTORY 1 2 1 MISCELLANEOUS contains 1 2 1 1 CONTROL BEEP ON OFF In OFF condition the acoustic signals actuated by the control limits are switched off Note The default setting is O...

Page 21: ...xtremely short ground connections which are essential for an undistorted waveform reproduction of non sinusoidal high frequency signals Adjustment at 1kHz The C trimmer adjustment low frequency compen...

Page 22: ...deflects the beam in vertical direction while the time base causes an X deflection from left to right at the same time Thereafter the beam becomes blanked and fly back occurs The following Yt operati...

Page 23: ...ng or lagging phase angle In alternate triggering condition phase difference measurement is not possible For greatest accuracy adjust the time base for slightly over one period and approximately the s...

Page 24: ...l triggering Automatic Peak Value Triggering Instrument specific information can be drawn from the items NM AT 10 and LEVEL 12 in the section Controls and Readout This trigger mode is automatically se...

Page 25: ...f the trigger signal and the lowest frequency range DC In this coupling mode the trigger signal is coupled galvanically to the trigger unit if normal triggering NM is present Therefore there is no low...

Page 26: ...connected to a BNC connector for scope input via a shielded cable Between cable and BNC center conductor a resistor of at least 100 should be series connected RF decoupling Often it is advisable to sh...

Page 27: ...se the holdoff control should be reset into its calibration detent fully ccw otherwise the brightness of the display is reduced drastically The function is shown in the following figures Fig 1 shows a...

Page 28: ...search operation Photo 3 MODE DEL DELAY TIME DIV 5ms div Trigger coupling TV F Trigger slope falling Delay time 20ms Reducing the time coefficient increasing the time base speed now expands the signa...

Page 29: ...to the lower half of the CRT The 1mV div and 2mV div deflection coefficient will not be selected by AUTO SET as the bandwidth is reduced on these settings Attention If a signal is applied with a pulse...

Page 30: ...or under test With high values of resistance the slope will tend towards the horizontal axis and with low values the slope will move towards the vertical axis Values of resistance from 20 to 4 7k can...

Page 31: ...luding probes between oscilloscope and circuit under test Otherwise both COMPONENT TESTER leads are not isolated against the circuit under test In circuit tests are possible in many cases However they...

Page 32: ...cable length must be less then 3 meters and must contain 9 screened lines connected 1 1 The oscilloscope RS232 connection 9 pole D SUB female is determined as follows Pin 2 Tx data data from oscillos...

Page 33: ...33 Subject to change without notice Front Panel HM404 2...

Page 34: ...Subject to change without notice 34...

Page 35: ...MANUAL HANDBUCH MANUEL...

Page 36: ...uk Spain HAMEG S L Villarroel 172 174 08036 BARCELONA Tel f 93 4301597 Telefax 93 321220 E mail email hameg es France HAMEG S a r l 5 9 av de la R publique 94800 VILLEJUIF T l 1 4677 8151 Telefax 1 4...

Reviews: