background image

9

Subject to change without notice

Type of signal voltage

observed display height H = 4.6div,
required voltage U = 0.05x4.6 = 0.23Vpp.

Input voltage U = 5Vpp,
set deflection coefficient D = 1V/div,
required display height H = 5:1 = 5div.

Signal voltage U = 230Vrmsx2

2 = 651Vpp

(voltage > 160Vpp, with probe 10:1: U = 65.1Vpp),
desired display height H = min. 3.2div, max. 8div,

max. deflection coefficient D = 65.1:3.2 = 20.3V/div,
min. deflection coefficient D = 65.1:8 = 8.1V/div,
adjusted deflection coefficient D = 10V/div.

The previous examples are related to the CRT graticule
reading. The results can also be determined with the aid of the
DV cursor measurement (

please note ”controls and

readout”

).

The input voltage must not exceed 400V, independent from
the polarity.

If an AC voltage which is superimposed on a DC voltage is
applied, the maximum peak value of both voltages must not
or -400V. So for AC voltages with a mean value of
zero volt the maximum peak to peak value is 800Vpp.

If attenuator probes with higher limits are used, the
probes limits are valid only if the oscilloscope is set to
DC input coupling.

If DC voltages are applied under AC input coupling conditions
the oscilloscope maximum input voltage value remains 400V.

The attenuator consists of a resistor in the probe and the 1M

input resistor of the oscilloscope, which are disabled by the
AC input coupling capacity when AC coupling is selected. This
also applies to DC voltages with superimposed AC voltages.

It also must be noted that due to the capacitive resistance of
the AC input coupling capacitor, the attenuation ratio depends
on the signal frequency. For sinewave signals with frequencies
higher than 40Hz this influence is negligible.

With the above listed exceptions

 HAMEG 

10:1 probes can be

used for DC measurements up to 600V or AC voltages (with
a mean value of zero volt) of 1200Vpp. The 100:1 probe

 HZ53

allows for 1200V DC or 2400Vpp for AC.

It should be noted that its AC peak value is derated at higher
frequencies. If a normal x10 probe is used to measure high
voltages there is the risk that the compensation trimmer
bridging the attenuator series resistor will break down causing
damage to the input of the oscilloscope.

However, if for example only the residual ripple of a high
voltage is to be displayed on the oscilloscope, a normal x10
probe is sufficient. In this case, an appropriate high voltage
capacitor (approx. 22-68nF) must be connected in series with
the input tip of the probe.

With

 Y-POS. 

control (input coupling to GD) it is possible to use

a horizontal graticule line as reference line for ground potential
before the measurement. It can lie below or above the
horizontal central line according to whether positive and/or
negative deviations from the ground potential are to be
measured.

Total value of input voltage

The dotted line shows a voltage alternating at zero volt level. If
superimposed on a DC voltage, the addition of the positive peak
and the DC voltage results in the max. voltage (DC + ACpeak).

Time Measurements

As a rule, most signals to be displayed are periodically
repeating processes, also called periods. The number of
periods per second is the repetition frequency. Depending on
the time base setting (

TIME/DIV.

-knob) indicated by the

readout, one or several signal periods or only a part of a period
can be displayed. The time coefficients are stated in ms/div,
µs/div or ns/div. The following examples are related to the
CRT graticule reading. The results can also be determined
with the aid of the 

T and 1/

T cursor measurement (

please

note ”controls and readout”

).

The duration of a signal period or a part of it is determined by
multiplying the relevant time (horizontal distance in div) by the
(calibrated) time coefficient displayed in the readout.

Uncalibrated, the time base speed can be reduced until a
maximum factor of 2.5 is reached. Therefore any intermediate
value is possible within the 1-2-5 sequence.

With the designations
L = displayed wave length in div of one period,
T = time in seconds for one period,
F = recurrence frequency in Hz of the signal,
Tc = time coefficient in ms, µs or ns/div and the relation
F = 1/T, the following equations can be stated:

However, these four values are not freely selectable. They
have to be within the following limits:
L between 0.2 and 10div, if possible 4 to 10div,
T between 10ns and 5s,
F between 0.5Hz and 100MHz,
Tc between 100ns/div and 500ms/div in 1-2-5 sequence

(with X-MAG. (x10) inactive), and

Tc between 10ns/div and 50ms/div in 1-2-5 sequence (with X-
MAG. (x10) active).

Examples:

Displayed wavelength L = 7div,
set time coefficient Tc = 100ns/div,
required period T = 7x100x10-9 = 0.7µs

Summary of Contents for HM404-2.02

Page 1: ...Instruments HANDBUCH MANUAL MANUEL Oscilloscope HM404 2 02 ENGLISH...

Page 2: ...MANUAL HANDBUCH MANUEL...

Page 3: ...fference measurement in DUAL mode Yt 23 Phase difference measurement in DUAL mode 23 Measurement of an amplitude modulation 23 Triggering and time base 24 Automatic Peak value Triggering 24 Normal Tri...

Page 4: ...ia the device under test mains line supply test leads control cables and or radiation The device under test as well as the oscilloscope may be effected by such fields Although the interior of the osci...

Page 5: ...0cm internal graticule Acceleration voltage approx 2000V Trace rotation adjustable on front panel Z Input Intens modulation max 5V TTL Calibrator 0 2V 1 1kHz 1MHz tr 4ns Line voltage 100 240V AC 10 50...

Page 6: ...The instrument has been designed for indoor use The permissible ambient temperature range during operation is 10 C 50 F 40 C 104 F It may occasionally be subjected to temperatures between 10 C 50 F an...

Page 7: ...nts The oscilloscope can be operated in any position but the convection cooling must not be impaired The ventilation holes may not be covered For continuous operation the instrument should be used in...

Page 8: ...upling The input coupling is selectable by the AC DC pushbutton The actual setting is displayed in the readout with the symbol for DC and the symbol for AC coupling Amplitude Measurements In general e...

Page 9: ...example only the residual ripple of a high voltage is to be displayed on the oscilloscope a normal x10 probe is sufficient In this case an appropriate high voltage capacitor approx 22 68nF must be co...

Page 10: ...lse and calculation is unnecessary Calculation of the example in the figure above results in a signal risetime tr 162 8 752 22 13 25ns The measurement of the rise or fall time is not limited to the tr...

Page 11: ...intain the nominal output voltage independent of frequency only if their connection cable is terminated with the prescribed resistance Here it must be noted that the terminating resistor HZ22 will onl...

Page 12: ...ive If the instrument is set to XY mode this control knob is inactive and the X POS knob must be used for a horizontal position shift DC voltage measurement If no signal is applied at the INPUT CHI 26...

Page 13: ...trigger mode is automatically activated or not depends on the trigger coupling setting TRIG MODE The way the trigger point symbol in the readout responds on different LEVEL control knob settings indic...

Page 14: ...control knob function between attenuator and vernier variable The current setting is displayed by the VAR LED located above the knob After switching the VAR LED 15 on the deflection coefficient is st...

Page 15: ...the readout instead of CHP In alternate trigger mode the trigger point symbol is switched off Alternate triggering is not available or automatically switched off under the following conditions ADD add...

Page 16: ...switch when the VAR LED above it is not lit Then the time deflection coefficient can be set in a 1 2 5 sequence and the time base is calibrated Rotating anticlockwise increases the deflection coeffic...

Page 17: ...ains calibrated until the vernier knob is operated The readout now indicates T instead of T Rotating further anticlockwise increases the time deflection coefficient uncalibrated until the maximum is r...

Page 18: ...afety earth contact of the line mains plug The input impedance is approx 1M II 20pF TRIG EXT This BNC socket is the external trigger signal input if external triggering is selected Briefly pressing th...

Page 19: ...upted dotted line indicates the inactive cursor V t Pressing and holding this pushbutton changes from voltage to time or frequency measurement and vice versa In XY mode the instrument is automatically...

Page 20: ...s MISCELLANEOUS and FACTORY 1 2 1 MISCELLANEOUS contains 1 2 1 1 CONTROL BEEP ON OFF In OFF condition the acoustic signals actuated by the control limits are switched off Note The default setting is O...

Page 21: ...xtremely short ground connections which are essential for an undistorted waveform reproduction of non sinusoidal high frequency signals Adjustment at 1kHz The C trimmer adjustment low frequency compen...

Page 22: ...deflects the beam in vertical direction while the time base causes an X deflection from left to right at the same time Thereafter the beam becomes blanked and fly back occurs The following Yt operati...

Page 23: ...ng or lagging phase angle In alternate triggering condition phase difference measurement is not possible For greatest accuracy adjust the time base for slightly over one period and approximately the s...

Page 24: ...l triggering Automatic Peak Value Triggering Instrument specific information can be drawn from the items NM AT 10 and LEVEL 12 in the section Controls and Readout This trigger mode is automatically se...

Page 25: ...f the trigger signal and the lowest frequency range DC In this coupling mode the trigger signal is coupled galvanically to the trigger unit if normal triggering NM is present Therefore there is no low...

Page 26: ...connected to a BNC connector for scope input via a shielded cable Between cable and BNC center conductor a resistor of at least 100 should be series connected RF decoupling Often it is advisable to sh...

Page 27: ...se the holdoff control should be reset into its calibration detent fully ccw otherwise the brightness of the display is reduced drastically The function is shown in the following figures Fig 1 shows a...

Page 28: ...search operation Photo 3 MODE DEL DELAY TIME DIV 5ms div Trigger coupling TV F Trigger slope falling Delay time 20ms Reducing the time coefficient increasing the time base speed now expands the signa...

Page 29: ...to the lower half of the CRT The 1mV div and 2mV div deflection coefficient will not be selected by AUTO SET as the bandwidth is reduced on these settings Attention If a signal is applied with a pulse...

Page 30: ...or under test With high values of resistance the slope will tend towards the horizontal axis and with low values the slope will move towards the vertical axis Values of resistance from 20 to 4 7k can...

Page 31: ...luding probes between oscilloscope and circuit under test Otherwise both COMPONENT TESTER leads are not isolated against the circuit under test In circuit tests are possible in many cases However they...

Page 32: ...cable length must be less then 3 meters and must contain 9 screened lines connected 1 1 The oscilloscope RS232 connection 9 pole D SUB female is determined as follows Pin 2 Tx data data from oscillos...

Page 33: ...33 Subject to change without notice Front Panel HM404 2...

Page 34: ...Subject to change without notice 34...

Page 35: ...MANUAL HANDBUCH MANUEL...

Page 36: ...uk Spain HAMEG S L Villarroel 172 174 08036 BARCELONA Tel f 93 4301597 Telefax 93 321220 E mail email hameg es France HAMEG S a r l 5 9 av de la R publique 94800 VILLEJUIF T l 1 4677 8151 Telefax 1 4...

Reviews: