![DAB MCE-150/P Instructions Manual Download Page 156](http://html1.mh-extra.com/html/dab/mce-150-p/mce-150-p_instructions-manual_3147179156.webp)
FRANÇAIS
154
Allumer un convertisseur à la fois et configurer les paramètres comme décrit au chap.5 en faisant attention avant d’allumer un
convertisseur, que les autres sont complètement éteints.
Une fois que tous les convertisseurs ont été configurés un par un, il est possible de les allumer tous en même temps.
4.5 Régulation multi-convertisseur
Quand on allume un système multi-convertisseur, l’attribution des adresses se fait en automatique et à travers un algorithme un
convertisseur est nommé leader de la régulation. Le leader décide la fréquence et l’ordre de démarrage de chaque convertisseur qui
fait partie de la chaîne.
La modalité de régulation est séquentielle (les convertisseurs démarrent un à la fois). Quand les conditions de démarrage se vérifient,
le premier convertisseur démarre, quand il est arrivé à sa fréquence maximum, le successif démarre puis ainsi de suite pour tous les
autres. L’ordre de démarrage n’est pas nécessairement croissant suivant l’adresse de la machine, mais il dépend des heures de travail
effectuées, voir ET: Temps d’échange par. 6.6.9.
Quand on utilise la fréquence minimum FL et qu’il n’y a qu’un seul convertisseur en marche, des surpressions peuvent se produire.
La surpression suivant les cas peut être inévitable et peut se vérifier à la fréquence minimum quand la fréquence minimum par rapport
à la charge hydraulique réalise une pression supérieure à celle désirée Dans le multi-convertisseur cet inconvénient reste limité à la
première pompe qui démarre car pour les autres le principe est le suivant : quand la pompe précédente est arrivée à la fréquence
maximum, la successive démarre à la fréquence minimum et la fréquence de la pompe se régule à la fréquence maximum. En
diminuant la fréquence de la pompe qui se trouve au maximum (évidemment jusqu’à la limite de sa fréquence minimum) on obtient
un croisement de démarrage des pompes, qui tout en respectant la fréquence minimum, ne génère pas de surpression.
4.5.1 Attribution de l’ordre de démarrage
À chaque allumage du système, un ordre de démarrage est associé à chaque convertisseur. Sur la base de cet ordre, les
convertisseurs démarrent l’un après l’autre.
L’ordre de démarrage est modifié durant l’utilisation suivant les besoins par les deux algorithmes suivants :
•
Atteinte du temps maximum de travail
•
Atteinte du temps maximum d’inactivité
4.5.1.1 Temps maximum de travail
Sur la base du paramètre ET (temps maximum de travail), chaque convertisseur a un compteur du temps de marche, et suivant celui-
ci, l’ordre de démarrage se met à jour suivant l’algorithme ci-après :
-
si on a dépassé au-moins la moitié de la valeur d’ET, l’échange de priorité s’active à la première extinction du convertisseur
(échange au standby).
-
si on atteint la valeur d’ET sans aucun arrêt, le convertisseur s’éteint inconditionnellement et se porte dans la condition de
priorité minimum de redémarrage (échange durant la marche).
Si le paramètre ET (temps maximum de travail), est mis à 0, on a l’échange à chaque redémarrage.
Voir ET: Temps d’échange par. 6.6.9.
4.5.1.2 Atteinte du temps maximum d’inactivité
Le système multi-convertisseur dispose d’un algorithme antistagnation qui a comme objectif de maintenir l’efficacité des pompes et
l’intégrité du liquide pompé. Il fonctionne en permettant une rotation dans l’ordre de pompage de manière à ce que toutes les pompes
fournissent au moins une minute de débit toutes les 23 heures. Cela se vérifie quelle que soit la configuration du convertisseur
(« enable » ou réserve). L’échange de priorité prévoit que le convertisseur arrêté depuis 23 heures soit porté à la priorité maximum
dans l’ordre de démarrage. Cela comporte que si un débit est requis par l’installation, c’est le premier qui se met en marche. Les
convertisseurs configurés comme réserve ont la priorité sur les autres. L’algorithme termine son action quand le convertisseur a fourni
au moins une minute de débit.
Quand l’intervention de la fonction antistagnation est terminée, si le convertisseur est configuré comme réserve, il est reporté à la
priorité minimum de manière à le préserver de l’usure.
Summary of Contents for MCE-150/P
Page 308: ...306 IEC 60634 1...
Page 309: ...307 1 6 1 1...
Page 312: ...310 1 2 1 1 1 1 2 5 2 1 2 1 2...
Page 313: ...311 2 1 1 2 1 2 L L L 2 2 4 2 15 2 2 1 1a...
Page 314: ...312 2a 3a 4b 1b 127 240 240 480...
Page 318: ...316 GP GI 6 6 4 6 6 5 7 A B C D...
Page 323: ...321 50 60 7 DC AC 50 60 8 6 2 1 5 36 36 12 3 3 3 3 2 13 9 10 8...
Page 325: ...323 I1 F1 I1 6 6 13 2 I2 P2 6 6 13 3 I3 F3 6 6 13 4 I4 1 F4 6 6 13 5 10 GND 7 I1 I2 I3 I4...
Page 326: ...324 3 13 64 X 128 4 MODE SET 11 SET 9 MODE 1 SET 11 3 EEprom SET 6 SET MODE 3 1 11...
Page 327: ...325 3 2 1 2 3 2 1 MODE SET MODE 10 2 2 5 5 5 2 2 12...
Page 329: ...327 12 SET 14 15 13 15 3 3...
Page 331: ...329 15 14 3 4 PW 6 6 16 GO SB...
Page 332: ...330 4 4 1 Link 8 4 2 4 2 1 Link Link 15...
Page 333: ...331 17 Link 4 2 2 0 5V 4 20 A 0 4 2 2 1 FI FI 4 2 2 2 FZ 6 5 9 1 4 2 2 3 0 5 4 20 A 0 5 0...
Page 336: ...334 4 4 2 2 4 2 5 4 5 ET 6 6 9 FL 4 5 1 4 5 1 1 ET ET ET ET 0 ET 6 6 9 4 5 1 2 23 23...
Page 339: ...337 FZ FZ 2 35 FZ 37 FZ FZ FZ FZ FI 0 FZ FZ 0 5 1 7 6 GI GP FL TB...
Page 362: ...360 OC 10 6 OF 10 6 33 8 8 1 PMW 4 2 8 2 8 3 8 3 SET EE EEprom FLASH...
Page 548: ...546 IEC 364 1 inverter...
Page 549: ...547 1 Inverter inverter inverter 6 inverter 1 1...
Page 552: ...550 1 2 1 1 inverter inverter 1 1 2 5 inverter inverter 2 1 inverter inverter 2 1 2 C...
Page 554: ...552 2a 3a 4b...
Page 558: ...556 GP GI 6 6 4 6 6 5 inverter 7 A B C D...
Page 567: ...565 3 2 1 2 3 2 1 MODE SET Setpoint MODE 10 ONOMA TOY MENOY 2 Setpoint 2 5 5 5 2 2 12...
Page 571: ...569 15 15 14 3 4 Password inverter password password inverter password PW 6 6 16 GO SB FAULT...
Page 728: ...726 IEC 364 1 1...
Page 729: ...727 1 1...
Page 732: ...730 1 2 1 1 1 2 5 2 1 2 1 2 C...
Page 733: ...731 2 1 1 0 2 1 2 L L L 2 2 4 2 15 2 2 1 1...
Page 734: ...732 2a 3a 4b...
Page 738: ...736 GP GI 6 6 4 6 6 5 7 2 2 3 2 Press Flow 6 A B C D...
Page 743: ...741 DC AC 50 60 Hz 7 DC V AC 50 60 Hz Vrms V 8 6 V 2 1 5 V 36 36 12V A 3 3 3 3 2 13 8 10 8...
Page 744: ...742 12 J5 I1 11 17 16 18 16 17 I2 11 15 16 18 15 16 I3 11 14 13 18 13 14 I4 11 12 13 8 12 13 9...
Page 746: ...744 3 13 Oled 64 X 128 4 MODE SET 11 SET or 9 MODE 1 SET 10 3 EEprom SET SET or MODE...
Page 751: ...749 14 14 3 4 PW 6 6 16 GO SB FAULT...
Page 752: ...750 4 4 1 Link 8 4 2 4 2 1 Link Link 15...
Page 966: ...964 IEC 60634 1...
Page 967: ...965 1 6 1 1...
Page 970: ...968 1 2 5 2 1 2 1 2 2 1 1...
Page 971: ...969 2 1 2 L L L 2 2 4 2 15 2 2 1 1a 1a...
Page 976: ...974 3 2 2 3 2 Press Flow 6 A B C D...
Page 981: ...979 50 60 7 DC AC 50 60 8 6 2 1 5 36 36 12 3 3 3 3 2 13 2 10 8...
Page 982: ...980 5 J5 I1 11 17 16 18 16 17 I2 11 15 16 18 15 16 I3 11 14 13 18 13 14 I4 11 12 13 8 12 13 8...
Page 984: ...982 SET 9 3 EEprom SET 6 SET MODE 3 1 11 3 2 1 2 3 2 1 MODE SET MODE 10 2 2 5 5...
Page 986: ...984 4 3 2 2 12 SET 7 15 13...
Page 987: ...985 8 3 3 psi 12 GO SB BL LP HP EC...
Page 989: ...987 PW 6 6 16 4 4 1 Link 8 4 2 4 2 1 Link Link 15...
Page 993: ...991 4 4 2 2 4 2 5 4 5 ET 6 6 9 FL 4 5 1 4 5 1 1 ET ET ET ET 0 ET 6 6 9 4 5 1 2 23 23...
Page 1020: ......
Page 1021: ......
Page 1022: ......
Page 1023: ......