6-71
k
Distribution (Continuous)
Distribution
Probability Density
Cumulative Distribution
Normal
Distribution
πσ
2
p
(
x
) =
1
e
–
2
2
σ
(
x
–
μ
)
2
μ
(
> 0)
σ
p
=
p
(
x
)
dx
Upper
Lower
∫
Student-
t
Distribution
p
(
x
) =
×
Γ
Γ
×
df
π
–
df
+
1
2
2
df
2
df
+ 1
df
x
2
1 +
χ
2
Distribution
p
(
x
) =
×
(
x
0)
Γ
1
2
df
df
2
×
x
2
1
df
2
–
1
x
2
–
×
e
F
Distribution
ndf
2
x
ddf
ndf
ndf
2
–
1
ddf
ndf
×
x
1 +
ndf + ddf
2
p
(
x
) =
–
Γ
2
ndf
+
ddf
Γ
2
ndf
× Γ
2
ddf
(
x
0)
Distribution
Inverse Cumulative Distribution
Normal
Distribution
p
=
p
(
x
)
dx
Upper
–
∞
∫
p
=
p
(
x
)
dx
Lower
∞
∫
p
=
p
(
x
)
dx
Upper
Lower
∫
tail = Left
tail = Right
tail = Central
Student-
t
Distribution
p
=
p
(
x
)
dx
Lower
∞
∫
χ
2
Distribution
F
Distribution
Summary of Contents for FX-CG10
Page 555: ...E CON3 Application English...