Member VLAN Spanning Two Rings Connected by One Switch
A member VLAN can span two rings interconnected by a common switch, in a figure-eight style topology.
A switch can act as a Master node for one FRRP group and a Transit for another FRRP group, or it can be a Transit node for both rings.
In the following example, FRRP 101 is a ring with its own Control VLAN, and FRRP 202 has its own Control VLAN running on another ring.
A Member VLAN that spans both rings is added as a Member VLAN to both FRRP groups. Switch R3 has two instances of FRRP running
on it: one for each ring. The example topology that follows shows R3 assuming the role of a Transit node for both FRRP 101 and FRRP 202.
Figure 40. Example of Multiple Rings Connected by Single Switch
Important FRRP Points
FRRP provides a convergence time that can generally range between 150ms and 1500ms for Layer 2 networks.
The Master node originates a high-speed frame that circulates around the ring. This frame, appropriately, sets up or breaks down the ring.
•
The Master node transmits ring status check frames at specified intervals.
•
You can run multiple physical rings on the same switch.
Force10 Resilient Ring Protocol (FRRP)
349
Содержание S4048T-ON
Страница 1: ...Dell Configuration Guide for the S4048 ON System 9 11 2 1 ...
Страница 148: ...Figure 10 BFD Three Way Handshake State Changes 148 Bidirectional Forwarding Detection BFD ...
Страница 251: ...Dell Control Plane Policing CoPP 251 ...
Страница 363: ... RPM Synchronization GARP VLAN Registration Protocol GVRP 363 ...
Страница 511: ...Figure 64 Inspecting the LAG Configuration Link Aggregation Control Protocol LACP 511 ...
Страница 512: ...Figure 65 Inspecting Configuration of LAG 10 on ALPHA 512 Link Aggregation Control Protocol LACP ...
Страница 515: ...Figure 67 Inspecting a LAG Port on BRAVO Using the show interface Command Link Aggregation Control Protocol LACP 515 ...
Страница 516: ...Figure 68 Inspecting LAG 10 Using the show interfaces port channel Command 516 Link Aggregation Control Protocol LACP ...
Страница 558: ...Figure 84 Configuring Interfaces for MSDP 558 Multicast Source Discovery Protocol MSDP ...
Страница 559: ...Figure 85 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 559 ...
Страница 560: ...Figure 86 Configuring PIM in Multiple Routing Domains 560 Multicast Source Discovery Protocol MSDP ...
Страница 564: ...Figure 88 MSDP Default Peer Scenario 2 564 Multicast Source Discovery Protocol MSDP ...
Страница 565: ...Figure 89 MSDP Default Peer Scenario 3 Multicast Source Discovery Protocol MSDP 565 ...
Страница 729: ...protocol spanning tree pvst no disable vlan 300 bridge priority 4096 Per VLAN Spanning Tree Plus PVST 729 ...
Страница 841: ...Figure 115 Single and Double Tag TPID Match Service Provider Bridging 841 ...
Страница 842: ...Figure 116 Single and Double Tag First byte TPID Match 842 Service Provider Bridging ...