7. PE1000Win software
AUTOMATIC PETRO PYROLYSIS MERCURY ANALYZER – MERCURY/PE-1000
97
No.600-2111-09
7.8. How to determine a calibration curve
A calibration curve is determined by the least squares method as follows:
Linear formulae
Cubic formulae
《
《
《
《
y=ax+b
》
》
》
》
a= (
∑
yx * n -
∑
y *
∑
x ) / (
∑
x^2 * n -
∑
x^2 )
b= (
∑
y - a *
∑
x ) / n
《
《
《
《
y=ax+Blank
》
》
》
》
a= (
∑
yx - (Blank *
∑
x) ) /
∑
x^2
b= Blank
《
《
《
《
y=ax+0
》
》
》
》
a=
∑
yx /
∑
x^2
b= 0
《
《
《
《
y=ax^3+bx^2+cx+d
》
》
》
》
tx3yp=
∑
x^3y
u1= (tx3yp*n - ty1p*tx3p)
s1= (u1*u9 - u3*u6)
tx2yp=
∑
x^2y
u2= (tx2yp*n - ty1p*tx2p)
s2= (u2*u9 - u3*u8)
tx1yp=
∑
xy
u3= (tx1yp*n - ty1p*tx1p)
s3= (u4*u9 - u6*u6)
ty1p =
∑
y
u4= (tx6p *n - tx3p*tx3p)
s4= (u5*u9 - u8*u6)
tx6p = a
∑
x^6
u5= (tx5p *n - tx3p*tx2p)
s5= (u7*u9 - u8*u8)
tx5p = a
∑
x^5
u6= (tx4p *n - tx3p*tx1p)
tx4p = a
∑
x^4
u7= (tx4p *n - tx2p*tx2p)
tx3p = a
∑
x^3
u8= (tx3p *n - tx2p*tx1p)
tx2p = b
∑
x^2
u9= (tx2p *n - tx1p*tx1p)
tx1p = c
∑
x
a= ( s1*s5 - s2*s4 ) / ( s3*s5 - s4*s4 )
b= ( s1 - a * s3 ) / s4
c= ( u1 - a * u4 - b * u5 ) / u6
d= ( tx3yp - a * tx6p - b * tx5p - c * tx4p ) / tx3p