GE Multilin
F35 Multiple Feeder Protection System
5-171
5 SETTINGS
5.8 TRANSDUCER INPUTS/OUTPUTS
5
(EQ 5.24)
The base unit for current (refer to the
FlexElements
section in this chapter for additional details) is:
(EQ 5.25)
The minimum and maximum power values to be monitored (in pu) are:
(EQ 5.26)
The following settings should be entered:
DCMA OUTPUT H2 SOURCE
: “SRC 1 Ia RMS”
DCMA OUTPUT H2 RANGE
: “4 to 20 mA”
DCMA OUTPUT H2 MIN VAL
: “0.000 pu”
DCMA OUTPUT H2 MAX VAL
: “1.260 pu”
The worst-case error for this application could be calculated by superimposing the following two sources of error:
•
±0.5% of the full scale for the analog output module, or
•
±0.25% of reading or ±0.1% of rated (whichever is greater) for currents between 0.1 and 2.0 of nominal
For example, at the reading of 4.2 kA, the worst-case error is max(0.0025
×
4.2 kA, 0.001
×
5 kA) + 0.504 kA = 0.515 kA.
EXAMPLE: VOLTAGE MONITORING
A positive-sequence voltage on a 400 kV system measured via source 2 is to be monitored by the dcmA H3 output with a
range of 0 to 1 mA. The VT secondary setting is 66.4 V, the VT ratio setting is 6024, and the VT connection setting is
“Delta”. The voltage should be monitored in the range from 70% to 110% of nominal.
The minimum and maximum positive-sequence voltages to be monitored are:
(EQ 5.27)
The base unit for voltage (refer to the
FlexElements
section in this chapter for additional details) is:
(EQ 5.28)
The minimum and maximum voltage values to be monitored (in pu) are:
(EQ 5.29)
The following settings should be entered:
DCMA OUTPUT H3 SOURCE
: “SRC 2 V_1 mag”
DCMA OUTPUT H3 RANGE
: “0 to 1 mA”
DCMA OUTPUT H3 MIN VAL
: “0.404 pu”
DCMA OUTPUT H3 MAX VAL
: “0.635 pu”
The limit settings differ from the expected 0.7 pu and 1.1 pu because the relay calculates the positive-sequence quantities
scaled to the phase-to-ground voltages, even if the VTs are connected in “Delta” (refer to the
Metering conventions
section
in chapter 6), while at the same time the VT nominal voltage is 1 pu for the settings. Consequently the settings required in
this example differ from naturally expected by the factor of
.
The worst-case error for this application could be calculated by superimposing the following two sources of error:
•
±0.5% of the full scale for the analog output module, or
•
±0.5% of reading
For example, under nominal conditions, the positive-sequence reads 230.94 kV and the worst-case error is
0.005 x 230.94 kV + 1.27 kV = 2.42 kV.
I
max
1.5
4.2 kA
×
6.3 kA
=
=
I
BASE
5 kA
=
minimum current
0 kA
5 kA
------------
0 pu, maximum current
6.3 kA
5 kA
-----------------
1.26 pu
=
=
=
=
0.005
20
4
–
(
)
6.3 kA
×
×
±
0.504 kA
±
=
V
min
0.7
400 kV
3
-------------------
×
161.66 kV,
V
max
1.1
400 kV
3
-------------------
×
254.03 kV
=
=
=
=
V
BASE
0.0664 kV
6024
×
400 kV
=
=
minimum voltage
161.66 kV
400 kV
---------------------------
0.404 pu, maximum voltage
254.03 kV
400 kV
---------------------------
0.635 pu
=
=
=
=
3
0.005
1
0
–
(
)
×
254.03 kV
×
±
1.27 kV
±
=
Содержание F35
Страница 2: ......
Страница 4: ......
Страница 30: ...1 20 F35 Multiple Feeder Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Страница 122: ...4 30 F35 Multiple Feeder Protection System GE Multilin 4 3 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Страница 296: ...5 174 F35 Multiple Feeder Protection System GE Multilin 5 9 TESTING 5 SETTINGS 5 ...
Страница 328: ...7 8 F35 Multiple Feeder Protection System GE Multilin 7 2 TARGETS 7 COMMANDS AND TARGETS 7 ...
Страница 332: ...8 4 F35 Multiple Feeder Protection System GE Multilin 8 1 FAULT LOCATOR 8 THEORY OF OPERATION 8 ...
Страница 350: ...A 16 F35 Multiple Feeder Protection System GE Multilin A 1 PARAMETER LIST APPENDIXA A ...
Страница 422: ...B 72 F35 Multiple Feeder Protection System GE Multilin B 4 MEMORY MAPPING APPENDIXB B ...
Страница 460: ...D 10 F35 Multiple Feeder Protection System GE Multilin D 1 IEC 60870 5 104 PROTOCOL APPENDIXD D ...
Страница 472: ...E 12 F35 Multiple Feeder Protection System GE Multilin E 2 DNP POINT LISTS APPENDIXE E ...