Si53xx-RM
Rev. 0.52
177
Figure 102. Si5374, Si5375 DSPLL D
Because they contain four different and independent DSPLLs, the Si5374 and Si5375 are supported by a different
software called Si537xDSLLsim. Noting that applications may be plesiochronous, the VCOs of the DSPLLs can be
very close in frequency to one another, which results in crosstalk susceptibility.
To minimize VCO crosstalk, Si537xDSPLLsim is aware that, for almost all frequency plans, there is more than one
possible VCO value. Si537xDSPLLsim makes use of this and strategically places frequency plans in DSPLL
locations so that DSPLLs that are next to one another will not have the same VCO value. For example, there are
two possible VCO values for a 622.08 MHz clock output frequency. In this case, DSPLLs A and C would have one
VCO value, while DSPLLs B and D would have a different VCO value. In this way, DSPLLs that are diagonally
opposite will have the same VCO value, but immediately adjacent DSPLLs will have different VCO values. In
general, the lower the output frequency, the greater the number of potential VCO values. With output frequencies
less than 200 MHz, there are usually four difference VCO values, which means that all four DSPLLs can have their
own unique VCO value.
To further minimize crosstalk, Si537xDSPLLsim automatically initializes the four DSPLLs with Free Run frequency
plans that both separate and pre-place the four VCO values. This ensures that they will not interfere with each
other or with any subsequent entered frequency plans.
Summary of Contents for Si5316 Series
Page 2: ...Si53xx RM 2 Rev 0 52 ...
Page 110: ...Si53xx RM 110 Rev 0 52 Figure 48 sfout_5 LVPECL Figure 49 sfout_6 CML ...
Page 111: ...Si53xx RM Rev 0 52 111 Figure 50 sfout_7 LVDS ...
Page 127: ...Si53xx RM Rev 0 52 127 Figure 66 155 52 MHz In 622 08 MHz Out Loop BW 7 Hz Si5324 ...
Page 128: ...Si53xx RM 128 Rev 0 52 Figure 67 19 44 MHz In 156 25 MHz Out Loop BW 80 Hz ...
Page 129: ...Si53xx RM Rev 0 52 129 Figure 68 19 44 MHz In 156 25 MHz Out Loop BW 5 Hz Si5324 ...
Page 131: ...Si53xx RM Rev 0 52 131 Figure 70 61 44 MHz In 491 52 MHz Out Loop BW 7 Hz Si5324 ...
Page 132: ...Si53xx RM 132 Rev 0 52 Figure 71 622 08 MHz In 672 16 MHz Out Loop BW 6 9 kHz ...
Page 133: ...Si53xx RM Rev 0 52 133 Figure 72 622 08 MHz In 672 16 MHz Out Loop BW 100 Hz ...
Page 134: ...Si53xx RM 134 Rev 0 52 Figure 73 156 25 MHz In 155 52 MHz Out ...
Page 139: ...Si53xx RM Rev 0 52 139 Figure 78 86 685 MHz In 173 371 MHz Out ...
Page 140: ...Si53xx RM 140 Rev 0 52 Figure 79 86 685 MHz In 693 493 MHz Out ...
Page 142: ...Si53xx RM 142 Rev 0 52 Figure 81 10 MHz In 1 GHz Out ...
Page 174: ...Si53xx RM 174 Rev 0 52 Figure 99 Si5374 Si5375 DSPLL A ...
Page 175: ...Si53xx RM Rev 0 52 175 Figure 100 Si5374 Si5375 DSPLL B ...
Page 176: ...Si53xx RM 176 Rev 0 52 Figure 101 Si5374 Si5375 DSPLL C ...