background image

 

Table of Contents 

1 Summary

 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 

3

 

1.1 Name plate ........................................................................................................ 3

 

1.2 Product series .................................................................................................... 4

 

1.3 Technical standards ............................................................................................ 6

 

1.4 Peripheral Electrical Devices and System Configuration...................................... 8

 

1.5 Product outline and installation dimensions......................................................... 9

 

2 Wirings

 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 

14

 

2.1 Standard wiring diagrams ................................................................................. 14

 

2.2 Main circuit wiring terminals ........................................................................... 16

 

2.3 Control circuit wiring terminals ........................................................................ 17

 

3 Panel operations

 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 

23

 

3.1 Keyboard interface ........................................................................................... 23

 

3.2 Parameter setting example & motor auto-tuning ................................................ 25

 

3.3 JOG ................................................................................................................. 26

 

4 Function codes (Parameters)

 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 

27

 

4.1 Basic monitoring parameters: d0.00-d0.41 ........................................................ 27

 

4.2 Basic functions group: P0.00-P0.28 .................................................................. 31

 

4.3 First motor parameters: P1.00-P1.37 ................................................................. 41

 

4.4 V/F control parameters: P2.00-P2.15 ................................................................ 46

 

4.5 Vector control parameters: P3.00-P3.22 ............................................................ 51

 

4.6 Input terminals: P4.00-P4.39 ............................................................................ 55

 

4.7 Output terminals: P5.00-P5.22 .......................................................................... 68

 

4.8 Start/stop control: P6.00-P6.15 ......................................................................... 74

 

4.9 Operation panel and display: P7.00-P7.14 ......................................................... 79

 

4.10 Auxiliary functions: P8.00-P8.53 .................................................................... 82

 

4.11 Fault and protection: P9.00-P9.70 ................................................................... 92

 

4.12 PID functions: PA.00-PA.28......................................................................... 103

 

4.13 Swing Frequency, Fixed Length and Count: PB.00-PB.09 ............................. 108

 

4.14 Multi-reference and simple PLC: PC.00-PC.51 ............................................. 111

 

4.15 Communication parameters: PD.00-PD.06 .................................................... 116

 

4.16 PE group: reserved ....................................................................................... 117

 

4.17 Function code management: PP.00-PP.04 ..................................................... 117

 

4.18 Torque control parameters: B0.00-B0.08....................................................... 119

 

4.19 Control optimization parameters: B5.00-B5.09.............................................. 121

 

4.20 Extended function parameters: B9.00-B9.09 ................................................. 123

 

Summary of Contents for DLB1-0D40S2G

Page 1: ...otor parameters P1 00 P1 37 41 4 4 V F control parameters P2 00 P2 15 46 4 5 Vector control parameters P3 00 P3 22 51 4 6 Input terminals P4 00 P4 39 55 4 7 Output terminals P5 00 P5 22 68 4 8 Start s...

Page 2: ...1 3 3 7 1 Communication protocol 133 7 2 Verification mode 136 7 3 Communication addresses 137 Appendix I Parameter list 1 4 1 Appendix II Expansion cards 1 5 6 Appendix II 1Multi function card DLB1...

Page 3: ...3 1 Summary 1 1 Name plate Graph 1 1 Nameplate Important Please read Appendix VI Safety Instructions carefully before and during using JADEN DLB1 inverters...

Page 4: ...0004T4G 4 0 10 5 8 5 DLB1 05D5T4G 5 5 15 5 13 DLB1 07D5T4G 7 5 20 5 16 DLB1 0011T4G 11 27 6 25 DLB1 0015T4G 15 37 1 32 DLB1 0018T4G 18 41 9 38 DLB1 0022T4G 22 49 3 45 DLB1 0030T4G 30 65 7 60 DLB1 003...

Page 5: ...LB1 0018T7G 18 35 7 34 DLB1 0022T7G 22 41 7 40 DLB1 0030T7G 30 57 4 55 DLB1 0037T7G 37 66 5 65 DLB1 0045T7G 45 81 7 80 DLB1 0055T7G 55 101 9 100 DLB1 0075T7G 75 137 4 130 DLB1 0090T7G 93 151 8 147 DLB...

Page 6: ...power 1 8 power 2 power square V F separation Two types complete separation half separation AVR output Ramp mode Straight line ramp S curve ramp Four groups of acceleration deceleration time with the...

Page 7: ...t terminal 6 digital input DI terminals DI5 supports up to 100 kHz high speed pulse input 3 analog input AI terminals support 0 10 V voltageinput or 4 20 mA current input Output terminal 2 digital out...

Page 8: ...ical Devices and System Configuration Grounding Circuit braker Motor DC reactor EMC filter Grounding AC reactor Inverter EMC filter Contactor AC reactor Power Brake resistor Brake unit Graph 1 2 Perip...

Page 9: ...9 1 5 Product outline and installation dimensions 1 5 1 Product outline installation dimensions Graph 1 3 0 4W 1 5KW product outlines dimensions Graph 1 42 2KW 3 7KW product outline dimensions...

Page 10: ...10 Graph 1 5 5 5 7 5KW product outline dimensions Graph 1 611 18 5KW product outline dimensions...

Page 11: ...11 Graph 1 722 30KW product outline dimensions Graph 1 837 55KW product outline dimensions...

Page 12: ...12 Graph 1 875 110KW product outline dimensions Graph 1 9 132 160KW product outline dimensions...

Page 13: ...13 1 5 2 Detachable keyboard operation panel dimensions Graph 1 10 detachable keyboard outline dimensions Graph 1 11 detachable keyboard aperture dimensions...

Page 14: ...14 2 Wirings 2 1 Standard wiring diagrams Graph 2 8 0 4 18 5KW inverter wiring diagram...

Page 15: ...15 Graph 2 922 400KW inverter wiring diagram...

Page 16: ...External brake resistor terminal P DC bus negative terminal U V W Three phase AC output terminal PE Grounding terminal 18 5KW 400KW Terminal name Function R S T Three phase power input terminal Exter...

Page 17: ...nput terminal X2 Default setting Forward JOG FJOG DI3 Multi function input terminal X3 Default setting Fault reset RESET DI4 Multi function input terminal X4 Default setting Multi speed terminal1 DI5...

Page 18: ...pulse output Pulse range 0 100kHz Open collector output Defined by P5 00 FM terminal output mode selection When used as high speed pulse output maximum frequency is 100kHz COM FM output common termin...

Page 19: ...Analog input terminal wiring D L B 1 A I 1 G ND 0 0 2 2 u F 5 0 V F e r r i t e b r e a d E x t e r n a l a n a l o g s o u r c e Graph 2 13Analog input terminaltreatment 2 Digital input terminal Shie...

Page 20: ...s source wiring mode P N P C O M 4 7 K 4 7 K D 1 5 D 1 1 S P 2 4 V 0 V 2 4 V V C C 3 3 E x t e r n a l c o n t r o l l e r I n v e r t e r 9 3 0 V Graph 2 15 PNP input wiring 3 Output terminal Digital...

Page 21: ...21 R e l a y F l y w h e e l d i o d e 2 4 V D O 1 D O 2 C M E M a xc u r r e n t 5 0 m A I n v e r t e r C O M Graph2 16Digital output wiring...

Page 22: ...SP jumper J9 I n t e r n a l2 4 V E x t e r n a l p o w e r 1 2 3 1 2 3 2 AO1 jumper J1 0 1 0 V 0 2 0 m A 1 2 3 1 2 3 3 AO2 jumper J2 0 1 0 V 0 2 0 m A 1 2 3 1 2 3 4 AI1 Jumper J4 0 1 0 V 0 2 0 m A 1...

Page 23: ...criptions DIR Direction ON FWD status OFF REV status RUN Operation ON RUN status OFF STOP status LOCAL Command source ON terminal operation control status OFF keyboardoperation control status BLINK re...

Page 24: ...key Select parameter when at run or stop When editing parameters can select place for editing DATA ENTER Confirm key Confirm parameters Increase key Decrease key DIR JOG Multi function selection key...

Page 25: ...ion code setting level 3 menu Graph 3 2 Example Change P3 02 from 10 00Hz to15 00Hz as shown in Graph3 3 Graph 3 3 Parameter inspection Please refer to P7 03 P7 04 P7 05 for parameter inspect settings...

Page 26: ...Parameters Motor1 P1 06 asynchronous motor stator resistor P1 07 asynchronous motor rotorresistor P1 08 asynchronous motor leakage inductanceP1 09 asynchronous motor mutual inductance P1 10 asynchrono...

Page 27: ...Function code Name Unit d0 00 Running frequency Hz 0 01Hz Inverter absolute value of theoretical running frequency d0 01 Set frequency Hz 0 01Hz Inverter absolute value of theoretical set frequency d...

Page 28: ...s described in the following table 0 9 place output terminal status 0 invalid 1 valid d0 09 AI1 voltage V 0 01V AI1 input voltage value d0 10 AI2 voltage V 0 01V AI2 input voltage value d0 11 AI3 volt...

Page 29: ...g time 0 1Min Used for timer control d0 21 AI1 voltage before correction 0 001V AI1voltage before correction d0 22 AI2 voltage before correction 0 001V AI3 voltage before correction d0 23 AI3 voltage...

Page 30: ...re value display Can also select different temperature measuring point to monitor temperature of other devices d0 35 Synchronousmotor rotor position 0 0 Synchronous motor rotor position AdjustencoderU...

Page 31: ...the encoder must be installed at the Inverterside 2 Voltage Frequency V F control It is applicable to applications with low load requirements or applications where one Inverteroperates multiple motors...

Page 32: ...can set the main frequency in the following 10 channels 0 Keyboard setting frequency P0 08 UP DOWN editable not retentive at power failure The initial value of the set frequency is the value of P0 08...

Page 33: ...tion settingindicates percentages of the value of P0 10 Maximum frequency If a DI terminal is used for the multi speed operation setting you need to set in group P4 7 Simple PLC setting When the simpl...

Page 34: ...ou can directly adjust the set main frequency by pressing keysand on the operation panel or using the UP DOWN function of input terminals 2 If the auxiliary frequency source is analog input AI1 AI2 an...

Page 35: ...setting initial value P0 09 Operation direction selection Same direction 0 0 Reverse direction 1 You can change the rotation direction of the motor just by modifying this parameter without changing t...

Page 36: ...input When the inverter reaches the upper limit it will continue to run at this speed P0 12 Frequency upper limit Frequency lower limit P0 14 to maximum frequencyP0 10 50 00Hz P0 13 Frequency upper l...

Page 37: ...the inverter s heatsink In this case you need to de rate the inverter Otherwise the inverter may overheat and alarm P0 16 Carrier frequency adjustment with temperature No 0 0 Yes 1 It is used to set w...

Page 38: ...ration result P0 22 Frequency reference resolution 0 1Hz 1 2 0 01Hz 2 It is used to set the resolution of all frequency related parameters If the resolution is 0 1 Hz the DLB1 can output up to 3200 Hz...

Page 39: ...l setting It is used to set the base frequency to be modified by using keys and or theterminal UP DOWN function If the running frequency and set frequency are different there will be a large differenc...

Page 40: ...setting 9 It is used to bind the three running command sources with the nine frequency sources facilitating to implement synchronous switchover For details on the frequency sources see the descriptio...

Page 41: ...535 inverter power 55kW 0 0001 6 5535 inverter power 55kW P1 08 Asynchronous motor leakage inductive reactance 0 01mH 655 35mH inverter power 55kW 0 001mH 65 535mH inverter power 55kW P1 09 Asynchrono...

Page 42: ...P1 01 or Rated motor voltage P1 02 is changed the Inverter automatically modifies the values of P1 16 to P1 20 You can also directly set the parameters based on the data provided by the synchronous mo...

Page 43: ...U V W phase sequence of UVWencoder Forward 0 0 Reverse 1 P1 33 UVW encoder angle offset 0 0 359 9 0 00 These two parameters are valid only when the UVW encoder is applied to a synchronous motor They...

Page 44: ...incremental encoder P1 30 and vector control current loop PI parameters of P3 13 to P3 16 by complete auto tuning Set this parameter to 2 and press RUN Then the Inverter starts complete auto tuning l...

Page 45: ...ber of pole pairs of resolver P1 34 first The Inverter will obtain motor parameters of P1 16 to P1 20 encoder related parameters of P1 30 to P1 33 and vector control current loop PI parameters of P3 1...

Page 46: ...0 Have automatic voltage regulation function 1 Have automatic voltage regulation function but not during decelerations 2 One s place Ten s place V F mode 0 Linear V F It is applicable to common const...

Page 47: ...d the motor startup torque is insufficient increase the value of P2 01 If the load is small decrease the value of P2 01 If it is set to 0 0 the Inverter performs automatic torque boost In this case th...

Page 48: ...lly if the motor rotational speed is different from the target speed slightly adjust this parameter P2 10 V F over excitation gain 0 200 64 During deceleration of the Inverter over excitation can rest...

Page 49: ...ction heating inverse power supply and motor torque control If V F separated control is enabled the output voltage can be set in P2 14 or by means of analog multi reference simple PLC PID or communica...

Page 50: ...same way as the frequency source For details see P0 03 100 0 of the setting in each mode corresponds to the rated motor voltage If the corresponding value is negative its absolute value is used P2 15...

Page 51: ...ing frequency is less than or equal to Switchover frequency 1 P3 02 the speed loop PI parameters are P3 00 and P3 01 If the running frequency is equal to or greater than Switchover frequency 2 P3 05 t...

Page 52: ...t of the speed loop regulator is torque current reference This parameter is used to filter the torque references It need not be adjusted generally and can be increased in the case of large speed fluct...

Page 53: ...1300 These are current loop PI parameters for vector control These parameters are automatically obtained through Asynchronous motor complete auto tuning or Synchronous motor no load auto tuning and n...

Page 54: ...calculation and automatic adjustment In direct calculation mode directly calculate the demagnetized current and manually adjust the demagnetized current by means of P3 19 The smaller the demagnetized...

Page 55: ...The terminal is used to control forward or reverse RUN of the Inverter 2 Reverse RUN REV 3 Three line control The terminal determines three line control of the Inverter For details see the descriptio...

Page 56: ...is digital setting the terminal is used to clear the modification by using the UP DOWN function or the increment decrement key on the operation panel returning the set frequency to the value of P0 08...

Page 57: ...rol after this terminal becomes ON 38 PID integral pause After this terminal becomes ON the integral adjustment function pauses However the proportional and differentiation adjustment functions are st...

Page 58: ...r multi reference terminals have 16 state combinations corresponding to 16 reference values as listed in the following table K4 K3 K2 K1 Reference setting Corresponding parameter OFF OFF OFF OFF Refer...

Page 59: ...software filter time of DI terminal status If DI terminals are liable to interference and may cause malfunction increase the value of this parameter to enhance the anti interference capability However...

Page 60: ...tructs forward rotation When only K2 is ON the Inverter instructs reverse rotation When K1 and K2 are ON or OFF simultaneously the Inverter stops K1 K2 Operation 0 0 Stop 0 1 REV 1 0 FWD 1 1 Stop 1 Tw...

Page 61: ...s enable terminal and DIx DIy terminal decides operation direction Value Function Description DIx 1 Forward operation FWD DIy 2 Reverse operation REV DIn 3 RUN enabled 0 invalid 1 valid X random SB1 S...

Page 62: ...2 Direction DIn 3 Enable 0 invalid 1 valid X random SB1 SB2 K Operation 0 X X Stop 1 1 0 FWD 1 1 1 REV 4 Two line mode 3 D I x F O R D I y R E V C OM K 1 K 2 In this mode the earlier valid terminals h...

Page 63: ...lid 1 valid X random SB1 SB2 SB3 Operation 0 X X Stop 1 1 0 FWD 1 0 1 REV 1 1 0 1 FWD 1 0 1 1 REV Ten s place To determine priorities between operation command and JOG P4 12 Terminal UP DOWN rate 0 01...

Page 64: ...ds the maximum value P4 15 the maximum value is used When the analog input voltage is less than the minimum value P4 13 the value set in P4 34 Setting for AI less than minimum input is used When the a...

Page 65: ...P4 29 Corresponding setting of pulse minimum input 100 0 100 0 0 0 P4 30 Pulse maximum input P4 28 50 00kHz 50 00 P4 31 Corresponding setting of pulse maximum input 100 0 100 0 100 0 P4 32 Pulse filt...

Page 66: ...han the minimum value The unit s digit ten s digit and hundred s digit of this parameter respectively correspond to the setting for AI2 AI2 and AI3 If the value of a certain digit is 0 when analog inp...

Page 67: ...valid mode High level valid 0 Low level valid 1 Hundred s place DI8 valid mode High level valid 0 Low level valid 1 Thousand s place DI9 valid mode High level valid 0 Low level valid 1 Ten Thousand s...

Page 68: ...1 FMR function open collector output terminal 0 44 0 P5 02 Relay function 1 T A T B T C 0 44 2 P5 03 Extension card relay function 2 P A P B P C 0 44 2 P5 04 DO1 function selection open collector outp...

Page 69: ...PB 09 10 Length reached The terminal becomes ON when the detected actual length exceeds the value set in PB 05 11 PLC cycle complete When simple PLC completes one cycle the terminal outputs a pulse s...

Page 70: ...8 16 the terminal becomes ON 25 Frequency level detection FDT2 output Refer to the descriptions of P8 28 and P8 29 26 Frequency 1 reached Refer to the descriptions of P8 30 and P8 31 27 Frequency 2 re...

Page 71: ...g d0 34 40 Current running time reached If the current running time of Inverter exceeds the value of P8 53 the terminal becomes ON 42 Command status Direct output 43 FWD command status 44 REV command...

Page 72: ...et coefficient 100 0 100 0 0 0 P5 11 AO1 gain 10 00 10 00 1 00 P5 12 AO2 zero offset coefficient 100 0 100 0 0 00 P5 13 AO2 gain 10 00 10 00 1 00 These parameters are used to correct the zero drift of...

Page 73: ...de 00000 Positive logic 0 Negative logic 1 Ten s place RELAY1 valid mode Positive logic 0 Negative logic 1 Hundred s place RELAY2 valid mode Positive logic 0 Negative logic 1 Thousand s place DO1 vali...

Page 74: ...tart asynchronous motor It is valid only for asynchronous motor and used for building the magnetic field before the motor runs For pre excited current and pre excited time see parameters of F6 05 and...

Page 75: ...y is 10 00 Hz P6 03 5 00 Hz The startup frequency is 5 00 Hz P6 04 2 0s The startup frequency holding time is 2 0s In this example the Inverter accelerates to 5 00 Hz and then accelerates to the set f...

Page 76: ...eases or decreases along the S curve This mode is generally used in the applications where start and stop processes are relatively smooth such as elevator and conveyor belt P6 08 and P6 09 respectivel...

Page 77: ...he Inverter starts DC braking when the running frequency is lower than the value set in P6 11 P6 12 Waiting time of stop DC braking When the running frequency decreases to the initial frequency of sto...

Page 78: ...ollowing figure P6 15 Brake use ratio 0 100 100 It is valid only for the Inverter with internal braking unit and used to adjust the duty ratio of the braking unit The larger the value of this paramete...

Page 79: ...panel control and remote command control terminal or communication You can perform switchover from the current command source to the operation panel control local operation If the current command sou...

Page 80: ...t to 1 and set P7 05 to the hexadecimal equivalent of this binary number 7 6 5 4 3 2 1 0 DI status set frequency Hz bus voltage V DO status AI1 voltage AI2 voltage AI3 voltage counter 15 14 13 12 11 1...

Page 81: ...imal places for load speed display 0decimal place 0 1 1decimal place 1 2decimal place 2 3decimal place 3 P7 12 is used to set the number of decimal places for load speed display The following gives an...

Page 82: ...es a total of four groups of acceleration deceleration time that is the preceding three groups and the group defined by P0 17 and P0 18 Definitions of four groups are completely the same You can switc...

Page 83: ...rol Enabled 0 0 Disabled 1 It is used to set whether the Inverter allows reverse rotation In the applications where reverse rotation is prohibited set this parameter to 1 P8 14 Running mode when set f...

Page 84: ...ting as follows 1 Set DI1 to user defined fault 1 P4 00 44 3 Set DO1 to power on time reached P5 04 24 4 Set the accumulative power on time threshold to 100 h P8 16 100h Then the Inverter reports 26 E...

Page 85: ...cancellation of the output The value of P8 20 is a percentage of the hysteresis frequency to the frequency detection value P8 19 The FDT function is shown in the following figure P8 21 Detection range...

Page 86: ...jump frequencies are valid during acceleration deceleration and the running frequency is within the frequency jump range the actual running frequency will jump over the set frequency jump amplitude ri...

Page 87: ...s used to select different groups of acceleration deceleration time based on the running frequency range rather than DI terminal during the running process of the Inverter During acceleration if the r...

Page 88: ...frequency reaching detection amplitude 2 0 0 100 0 maximum frequency 0 0 If the output frequency of the Inverter is within the positive and negative amplitudes of the any frequency reaching detection...

Page 89: ...he output current of the Inverter is equal to or higher than the overcurrent threshold and the duration exceeds the detection delay time the corresponding DO becomes ON The output overcurrent detectio...

Page 90: ...Timing duration 0 0Min 6500 0Min 0 0Min If P8 42 is set to 1 the Inverter starts to time at startup When the set timing duration is reached the Inverter stops automatically and meanwhile the correspon...

Page 91: ...ters are used to implement the dormant and wakeup functions in the water supply application When the Inverter is in running state the Inverter enters the dormant state and stops automatically after th...

Page 92: ...motor overheats but the Inverter does not report the alarm P9 02 Motor overload warning coefficient 50 100 80 This function is used to give a warning signal to the control system via DO before motor...

Page 93: ...onse will be slow For large inertia load the value should be large Otherwise the suppression result will be poor and overcurrent fault may occur If the overcurrent stall gain is set to 0 the overcurre...

Page 94: ...4 E oCCo Constant speed over current 5 5 E oUAC Acceleration over voltage 6 6 E oUdE Deceleration over voltage 7 7 E oUCo Constant speed over voltage 8 8 E CPF Control power fault 9 9 E LU Under volta...

Page 95: ...equence is as follows If a DI is ON the setting is 1 If the DI is OFF the setting is 0 The value is the equivalent decimal number converted from the DI status P9 21 Output terminal status upon 3rd fau...

Page 96: ...faultinverter status Reserved P9 33 Power on time upon 2nd fault It displays the present power on time when the latest fault occurs P9 34 Running time upon 2nd fault It displays the present running ti...

Page 97: ...P9 44 Running time upon 1st fault It displays the present running time when the latest fault occurs P9 47 Fault protection action selection 1 One s place Motor overload 11 E oLt 000 00 Coast to stop 0...

Page 98: ...rheat 45 E oHt Coast to stop 0 Stop according to stop mode 1 Continue to run 2 Ten thous and s place Accumulative running time reached 26 E ArA Coast to stop 0 Stop according to stop mode 1 Continue t...

Page 99: ...50 Fault protection action selection 4 One s place Speed deviation too large 42 E SdL 000 00 Coast to stop 0 Stop according to stop mode 1 Continue to run 2 Ten s place Motor over speed 43 E oSF Coast...

Page 100: ...e motor temperature sensor is connected to AI3 and PGND of the extension card The AI3 terminal of the DLB1 supports both PT100 and PT1000 Set the sensor type correctly during the use You can view the...

Page 101: ...0 Enabled 1 P9 64 Detection level of load becoming 0 0 0 100 0 motorrated current 10 0 P9 65 Detection time of load becoming 0 0 0s 60 0s 1 0s If protection upon load becoming 0 is enabled when the ou...

Page 102: ...the over speed detection time is 0 0s the over speed detection function is disabled P9 69 Detection value of too large speed deviation 0 0 50 0 maximum frequency 20 0 P9 70 Detection time of too larg...

Page 103: ...agram of PID control Code Description Setting range Defa ult Restric tions PA 00 PID setting source PA 01 setting 0 0 AI1 1 AI2 2 AI3 keyboard potentiometer 3 Pulse DI5 4 Communication setting 5 Multi...

Page 104: ...cides the regulating intensity of the PID regulator The higher the Kp1 is the larger the regulating intensity is The value 100 0 indicates when the deviation between PID feedback and PID setting is 10...

Page 105: ...anges linearly according to the change time reducing the impact caused by sudden setting change on the system PA 12 PID feedback filter time 0 00s 60 00s 0 00s PA 13 PID output filter time 0 00s 60 00...

Page 106: ...g is smaller than the value of PA 19 group 1 is selected When the absolute value of the deviation between PID feedback and PID setting is higher than the value of PA 20 group 2 is selected When the de...

Page 107: ...nvalid no matter whether the DI allocated with function 38 PID integral pause is ON or not Whether to stop integral operation when the output reaches the limit If Stop integral operation is selected t...

Page 108: ...frequency 1 Relative to the maximum frequency P0 10 maximum output frequency It is fixed swing amplitude system The swing amplitude is fixed PB 01 Swing frequency amplitude 0 0 100 0 0 0 PB 02 Jump f...

Page 109: ...als PB 06 Actual length is calculated by dividing the number of pulses collected by the DI terminal by PB 07 Number of pulses each meter When the actual length PB 06 exceeds the set length in PB 05 th...

Page 110: ...110 allocated with function 9 Designated count value reached becomes ON Then the counter continues to count until the set count value is reached PB 09 should be equal to or smaller than PB 08...

Page 111: ...0 PC 10 Multi reference 10 100 0 100 0 0 0 PC 11 Multi reference 11 100 0 100 0 0 0 PC 12 Multi reference 12 100 0 100 0 0 0 PC 13 Multi reference 13 100 0 100 0 0 0 PC 14 Multi reference 14 100 0 10...

Page 112: ...either the frequency source or V F separated voltage source When simple PLC is used as the frequency source whether parameter values of PC 00 to PC 15 are positive or negative determines the running d...

Page 113: ...ce 0 0 3 0 PC 20 Running time of simple PLC reference 1 0 0s h 6553 5s h 0 0s h PC 21 Acceleration deceleration time of simple PLC reference 1 0 3 0 PC 22 Running time of simple PLC reference 2 0 0s h...

Page 114: ...ce 10 0 0s h 6553 5s h 0 0s h PC 39 Acceleration deceleration time of simple PLC reference 10 0 3 0 PC 40 Running time of simple PLC reference 11 0 0s h 6553 5s h 0 0s h PC 41 Acceleration deceleratio...

Page 115: ...eference 0 source PC 00 setting 0 0 AI1 1 AI2 2 AI3 keyboard potentiometer 3 Pulse setting 4 PID 5 Set by preset frequency P0 08 modified via terminal UP DOWN 6 It determines the setting channel of re...

Page 116: ...rate One s place MODBUS 6005 300BPS 0 600BPS 1 1200BPS 2 2400BPS 3 4800BPS 4 9600BPS 5 19200BPS 6 38400BPS 7 57600BPS 8 115200BPS 9 Ten s place Profibus DP 115200BPS 0 208300BPS 1 256000BPS 2 512000B...

Page 117: ...65535 0 If it is set to any non zero number the password protection function is enabled After a password has been set and taken effect you must enter the correct password in order to enter the menu If...

Page 118: ...rs 4 Backup current user parameters to control board memory If PP 01 is set to 4 the current parameter settings are backed up in control board memory helping you to restore the setting if incorrect pa...

Page 119: ...ion setting 5 MIN AI1 AI2 6 MAX AI1 AI2 7 B0 03 Torque digital setting in torque control 200 0 200 0 150 B0 01 is used to set the torque setting source There are a total of eight torque setting source...

Page 120: ...celeration deceleration time in torque control makes the motor rotational speed change softly However in applications requiring rapid torque response set the acceleration deceleration time in torque c...

Page 121: ...ncy varies linearly with the change of the output frequency ensuring that the ratio of carrier frequency to output frequency remains unchanged Synchronous modulation is generally used at high output f...

Page 122: ...0 0V T h r e e p h a s e3 8 0V 3 5 0V T h r e e p h a s e4 8 0V 4 5 0V T h r e e p h a s e6 9 0V 6 5 0V B5 07 SVC optimization mode selection No optimization 0 1 Optimization mode1 1 Optimization mode...

Page 123: ...ing load type the inverter will configure parameters automatically For details please contact JADEN directly B9 01 User defined parameter 0 0 65535 0 B9 02 User defined parameter 1 0 65535 0 B9 03 Use...

Page 124: ...a n e l i s a v a i l a b l e B e f o r ec o n t a c t i n gJ A D E Nf o r t e c h n i c a l s u p p o r t y o uc a nf i r s t d e t e r mi n et h ef a u l t t y p e a n a l y z et h e c a u s e s a n...

Page 125: ...r me d o nt h er o t a t i n gmo t o r 7 A s u d d e n l o a d i s a d d e d d u r i n g a c c e l e r a t i o n 8 T h eI n v e r t e r mo d e l i so f t o os ma l l p o w e r c l a s s 1 E l i mi n...

Page 126: ...en o t i n s t a l l e d 1 A d j u s t t h ev o l t a g et on o r ma l r a n g e 2 C a n c e l t h ee x t e r n a l f o r c eo r i n s t a l l t h eb r a k i n gr e s i s t o r 3 I n c r e a s et h e...

Page 127: ...u t o r o r J A D E Nd i r e c t l y Mo d u l eo v e r h e a t 1 4 E o H 1 1 T h ea mb i e n t t e mp e r a t u r ei s t o o h i g h 2 T h ea i r f i l t e r i s b l o c k e d 3 T h ef a ni s d a ma g...

Page 128: ...a g e 2 H a n d l eb a s e do no v e r c u r r e n t S h o r t c i r c u i t t o g r o u n d 2 3 E S H o tT h emo t o r i s s h o r t c i r c u i t e dt ot h e g r o u n d R e p l a c et h ec a b l eo...

Page 129: ...r mt h emo t o r a u t o t u n i n g 3 S e t F 9 6 9a n dF 9 7 0c o r r e c t l y b a s e do nt h ea c t u a l s i t u a t i o n Mo t o r o v e r s p e e d 4 3 E o S F 1 T h ee n c o d e r p a r a me...

Page 130: ...e r t e r i s t o o l o w 1 R e c o n n e c t t h e8 c o r ea n d 2 8 c o r ec a b l e s 2 C o n t a c t t h eo f f i c i a l d i s t r i b u t o r o r J A D E Nd i r e c t l y f o r t e c h n i c a...

Page 131: ...u l t y 1 C h e c k a n dr e s e t t h ep a r a me t e r s i ng r o u pP 4 2 R e c o n n e c t t h ee x t e r n a l s i g n a l c a b l e s 3 R e c o n f i r mt h ej u mp e r b a r a c r o s s O Pa n...

Page 132: ...d air PCB Is it dusty Blow away the dust with 4 6kg cm2 pressure dry compressed air Cooling fan Is it noisy and with abnormal oscillations Relace the cooling fan Power components Is it dusty Blow away...

Page 133: ...s sent frame by frame 3 Topological structure Single master multi slave system Slave address setting range is 1 to 247 0 is broadcast communication address Network slave address must be unique 7 1 2 P...

Page 134: ...lue will be wrong RTU frame format Frame START At least 3 5 character time Slave address ADR Communication address 0 247 Command code CMD 03 Read slave parameter 06 Write slave parameter Data content...

Page 135: ...slave address02H Master command information ADR 02H CMD 06H Information address high place F0H Informationaddress low place 0AH Information content high place 13H Information content low place 88H CR...

Page 136: ...character is valid for CRC start and stop bits and parity bit are invalid In CRC process each 8 bit word XOR with registry separately The result moves to the lowest valid place Highest valid place is...

Page 137: ...high place byte A to 4 Address Function 1000 Communication setting value 10000 10000 decimal 1001 Running frequency 1002 DC bus voltage 1003 Output voltage 1004 Output current 1005 Output power 1006 O...

Page 138: ...op 0006 Decelerate to stop 0007 Fault reset Read inverter status read only Statusaddress Statusfunction 3000 0001 FWD operation 0002 REV operation 0003 stop Parameter lock verification Return value 88...

Page 139: ...r fault description Inverter fault address Inverter fault information 8000 0000 No fault 0001 reserved 0002 Over current during acceleration 0003 Over current during deceleration 0004 Over current at...

Page 140: ...0028 Pulse by pulsecurrent limit fault 0029 Motor switchover fault during running 002A Speed deviation too large 002B Motor over speed 002D Motor over heat 005A Encoder line number setting fault 005B...

Page 141: ...AI2 voltage V 0 01V d0 11 AI3 voltage V 0 01V d0 12 Count value 1 d0 13 Length value 1 d0 14 Load speed 1 d0 15 PID setting 1 d0 16 PID feedback 1 d0 17 PLC stage 100 d0 18 Input pulse frequency Hz 0...

Page 142: ...reference 0 P0 06 Range of auxiliary frequency Y for X and Y operation 100 P0 07 Frequency source combination mode 00 P0 08 Keyboard setting frequency 50 00Hz P0 09 Operation direction selection 0 P0...

Page 143: ...eactance P1 10 Asynchronous motor no load current P1 16 Synchronous motor stator resistance P1 17 Synchronous motor shaft D inductance 0 00Hz P1 18 Synchronous motor shaft Q inductance 0 0 P1 19 Induc...

Page 144: ...s P3 02 Switchover frequency 1 5 00Hz P3 03 Speed loop proportional gain 2 20 P3 04 Speed loop integral time 2 1 00s P3 05 Switchover frequency 2 10 00Hz P3 06 Vector control slip gain 150 P3 07 Time...

Page 145: ...ding setting of AI curve 1 minimum input 0 0 P4 15 AI curve 1 maximum input 10 00V P4 16 Corresponding setting of AI curve 1 maximum input 100 0 P4 17 AI1 filter time 0 10s P4 18 AI curve 2 minimum in...

Page 146: ...A P B P C 2 P5 04 DO1 function selection open collector output terminal 1 P5 05 DO2 function selection open collector output terminal 1 P5 06 FMP output selection 0 P5 07 AO1 output selection 0 P5 08...

Page 147: ...splay P7 00 P7 14 P7 01 DIR JOG function 0 P7 02 STOP RESET 1 P7 03 LED display running parameters 1 1F P7 04 LED display running parameters 2 0 P7 05 LEDdisplay stopparameters 33 P7 06 Load speed dis...

Page 148: ...eleration 0 P8 25 Frequency switchover point between acceleration time 1 and acceleration time 2 0 00Hz P8 26 Frequency switchover point between deceleration time 1 and deceleration time 2 0 00Hz P8 2...

Page 149: ...P9 02 Motor overload warning coefficient 80 P9 03 Over voltage stall gain 0 P9 04 Over voltage stall protective voltage 130 P9 05 Over current stall gain 20 P9 06 Over current stall protective curren...

Page 150: ...fault P9 44 Running time upon 1st fault P9 47 Fault protection action selection 1 00000 P9 48 Fault protection action selection 2 00000 P9 49 Fault protection action selection 3 00000 P9 50 Fault pro...

Page 151: ...0 PA 06 Integral timeTi1 2 00s PA 07 Differential timeTd1 0 000s PA 08 Cut off frequency of PID reverse rotation 2 00Hz PA 09 PID deviation limit 0 0 PA 10 PID differential limit 0 10 PA 11 PID settin...

Page 152: ...Triangular wave rising time coefficient 50 0 PB 05 Set length 1000m PB 06 Actual length 0m PB 07 Number of pulses per meter 100 0 PB 08 Set count value 1000 PB 09 Designated count value 1000 PC Multi...

Page 153: ...Acceleration deceleration time of simple PLC reference 3 0 PC 26 Running time of simple PLC reference 4 0 0s h PC 27 Acceleration deceleration time of simple PLC reference 4 0 PC 28 Running time of s...

Page 154: ...ime of simple PLC reference 14 0 0s h PC 47 Acceleration deceleration time of simple PLC reference 14 0 PC 48 Running time of simple PLC reference 15 0 0s h PC 49 Acceleration deceleration time of sim...

Page 155: ...r frequency upper limit 12 00Hz B5 01 PWM modulation mode 0 B5 02 Dead zone compensation mode selection 1 B5 03 Random PWM depth 0 B5 04 Rapid current limit 1 B5 05 Current detection compensation 5 B5...

Page 156: ...ut terminal 2 DI DI7 DI8 Output terminal 1 relay output TA2 TB2 TC2 1 DO DO2 Communication RS 485 communication Supports Modbus RTU communication protocol CAN communication Supports CANlink communicat...

Page 157: ...P1 Digital input8 DO terminal DO2 COM Digital output2 Optical coupler isolation bipolar open collector output Output voltage range 0V 24V Outputcurrent range 0mA 50mA Relay output RELAY2 TA2 TC2 Norma...

Page 158: ...LB1 PG1 ABZUVW incremental encoder Defferential inputPG card not with frequency demultiplication output OC inputPG card not with frequency demultiplication output 5V 12V 24V voltage optional When orde...

Page 159: ...159...

Page 160: ...positive 6 Z Encoder output Z signal negative 7 U Encoder output U signal positive 8 U Encoder output U signal negative 9 V Encoder output V signal positive 10 V Encoder output V signal negative 11 W...

Page 161: ...citation frequency 10kHz VRMS 7V VP P 3 15 27 DLB1 PG2 terminals Serial number Mark Description 1 PEXC1 Resolver excitation negative 2 PEXC Resolver excitation positive 3 PSINLO Resolver feedbackSIN n...

Page 162: ...erent resistance and power based on actual needs However the resistance must not be lower than the recommended value The power may be higher than the recommended value The braking resistor model is de...

Page 163: ...l 1 20 6000W 1 2 in parallel 75G 93P 1 18 9600W 1 2 in parallel 93G 1 18 9600W 1 2 in parallel 660V class Inverter capacity Brake unit Recommended brake resistor 100 brake torque Specification Quantit...

Page 164: ...0 25 4 0 4 0 1 0 DLB1 07D5T4G DLB1 0011T4P 40 32 4 0 4 0 1 0 DLB1 0011T4G DLB1 0015T4P 63 40 6 0 4 0 1 0 DLB1 0015T4G DLB1 18D5T4P 63 40 6 0 6 0 1 0 DLB1 18D5T4G DLB1 0022T4P 100 63 6 6 0 1 5 DLB1 002...

Page 165: ...093T7G DLB1 0110T7P 200 125 50 35 1 5 DLB1 0110T7G DLB1 0132T7P 200 125 95 70 1 5 DLB1 0132T7G DLB1 0160T7P 250 160 120 95 1 5 DLB1 0160T7G DLB1 0185T7P 350 350 185 120 1 5 DLB1 0185T7G DLB1 0200T7P 3...

Page 166: ...80 0 17 80 0 088 65 0 71 DLB1 0037T4G DLB1 0045T4P 90 0 15 90 0 077 80 0 58 DLB1 0045T4G DLB1 0055T4P 120 0 12 120 0 06 95 0 486 DLB1 0055T4G DLB1 0075T4P 150 0 09 150 0 047 120 0 385 DLB1 0075T4G DLB...

Page 167: ...P 81 0 47 79 6 0 24 99 6 1 4 DLB1 0093T7G DLB1 0110T7P 96 0 39 94 0 2 117 8 1 2 DLB1 0110T7G DLB1 0132T7P 116 8 0 32 114 0 17 143 0 96 DLB1 0132T7G DLB1 0160T7P 139 7 0 27 136 9 0 14 171 0 81 DLB1 016...

Page 168: ...urrent imbalance caused by power phase imbalance Input EMC filter Input side of inverter 1 Reduce inverter EMI transmission and emission 2 Improve inverter counter interference capability DC reactor D...

Page 169: ...ference generated by a device or system must be restricted within a certain limit the device or system must have sufficient immunity to the electromagnetic interference in the environment EMC of inver...

Page 170: ...the mains voltage Add a safety capacitor to the power input cable and wind the cable with magnetic rings Add a safety capacitor to the interfered signal port or wind the signal cable with magnetic rin...

Page 171: ...not touch the components with your hands Failure to complywill result in static electricity damage During installation Install the equipment on incombustible objects such as metal and keep it away fro...

Page 172: ...he power supply is consistent with therated voltage class of the inverter The input terminals R S T and output terminals U V W are properly connected No short circuit exists in the peripheral circuit...

Page 173: ...onlyby qualified personnel Failure to comply will result in personalinjury or damage to the Inverter Do not repair or maintain the Inverter at power on Failure tocomply will result in electric shock R...

Reviews: