Fitting and wiring
FC5101 and FC5102
19
Version: 2.0
3.2.9
BK51x0/BX5100: 5-pin open style connector
The BK51x0/BX5100 (X510) Bus Couplers have a recessed front surface on the left hand side with a five pin
connector.
The supplied CANopen socket can be inserted here.
Fig. 14: BK51x0/BX5100 socket assignment
The left figure shows the socket in the BK51x0/BX5100 Bus Coupler. Pin 5 is the connection strip's top most
pin. Pin 5 is not used. Pin 4 is the CAN high connection, pin 2 is the CAN low connection, and the screen is
connected to pin 3 (which is connected to the mounting rail via an R/C network). CAN-GND can optionally be
connected to pin 1. If all the CAN ground pins are connected, this provides a common reference potential for
the CAN transceivers in the network. It is recommended that the CAN GND be connected to earth at one
location, so that the common CAN reference potential is close to the supply potential. Since the CANopen
BK51X0/BX5100 Bus Couplers provide full electrical isolation of the bus connection, it may in appropriate
cases be possible to omit wiring up the CAN ground.
ZS1052-3000 Bus Interface Connector
The ZS1052-3000 CAN Interface Connector can be used as an alternative to the supplied connector. This
makes the wiring significantly easier. There are separate terminals for incoming and outgoing leads and a
large area of the screen is connected via the strain relief. The integrated terminating resistor can be switched
externally. When it is switched on, the outgoing bus lead is electrically isolated - this allows rapid wiring fault
location and guarantees that no more than two resistors are active in the network.
3.2.10
LC5100: Bus connection via spring-loaded terminals
In the low cost LC5100 Coupler, the CAN wires are connected directly to the contact points 1 (CAN-H,
marked with C+) and 5 (CAN-L, marked with C-). The screen can optionally be connected to contact points 4
or 8, which are connected to the mounting rail via an R/C network.