background image

Test Records

A-5 Technical Reference

MG362x1A MM

PN: 10370-10386  Rev. B

A-29

MG362x1A

Firmware Revision:

Operator:

Serial Number:

Date:

Options:

Power Level Accuracy Test (6.0 GHz)

All MG362x1A Models

  (9 of 27)

Power Sensor:

 For Models with K connectors, use power sensor N5532B-550 with 2.4mm to 2.92 mm (K) adapter (P/N 11904D)

Set L1

Measured Power 

(dBm)

Offset Value 

(dB)

Final Value

(dBm)

Specification 

(dBm)

See TDS 

(11410-00928)

Measurement 

Uncertainty 

(dB)

+25 dBm

 

0.29

+20 dBm

 

0.17

+15 dBm

0.17

+10 dBm

0.17

+5 dBm

0.17

+0 dBm 

0.17

Calculated Offset

N/A

N/A

N/A

–5 dBm

0.016

–10 dBm

0.019

–15 dBm

0.022

–20 dBm

0.024

–25 dBm

0.027

–30 dBm

0.030

–35 dBm

0.032

–40 dBm

0.035

–45 dBm

0.038

–50 dBm

0.040

–55 dBm

0.043

–60 dBm

0.052

–65 dBm

0.054

–70 dBm

0.057

–75 dBm

0.059

–80 dBm

0.074

–85 dBm

0.076

–90 dBm

0.078

–95 dBm

0.080

–100 dBm

0.082

Summary of Contents for Rubidium MG362 1A Series

Page 1: ...es Low Noise RF Microwave Signal Generators MG36221A 9 kHz to 20 GHz MG36241A 9 kHz to 43 5 GHz Anritsu Company 490 Jarvis Drive Morgan Hill CA 95037 2809 USA Part Number 10370 10386 Revision B Published May 2022 Copyright 2022 Anritsu Company ...

Page 2: ...mpany to confirm whether or not these items are export controlled When disposing of export controlled items the products and manuals need to be broken or shredded to such a degree that they cannot be unlawfully used for military purposes Updates Updates if any can be downloaded from the Documents area of the Anritsu web site at http www anritsu com For the latest service and sales contact informat...

Page 3: ...2 Functional Description 2 1 Introduction 2 1 2 2 Major Subsystems 2 1 Digital Control 2 1 Front Panel Assembly 2 1 Frequency Synthesis 2 1 YIG Assembly 2 1 ALC 2 2 RF Deck 2 2 Power Supply 2 2 Inputs Outputs 2 2 Motherboard Interconnections 2 2 2 3 Frequency Synthesis 2 5 9 kHz to 2 2 GHz Digital Down Converter 2 5 RF Outputs 2 2 GHz to 20 GHz 2 5 20 to 43 5 GHz Model MG36241A 2 5 Frequency Exten...

Page 4: ...3 3 Anritsu Test Executive ATE 3 6 3 4 Station Asset Utility 3 7 Station Asset Utility Setup 3 7 Enter Test Equipment Assets 3 8 Set the Communication Parameters 3 9 ATE Testing 3 10 3 5 Initial Calibration 3 11 Equipment Required 3 11 3 6 Harmonics and Spurious Signals Test 3 12 Equipment Required 3 12 3 7 Single Sideband Phase Noise Test 3 14 Equipment Required 3 14 3 8 Power Level Accuracy and ...

Page 5: ...w Band 3 34 Wide FM Tune Gain for YIG High Band 3 35 Chapter 4 Performance Verification 4 1 Introduction 4 1 4 2 Test Records 4 1 4 3 Connector and Key Notation 4 1 4 4 Measurement Uncertainty 4 1 4 5 Test Equipment List 4 2 4 6 Measurement Uncertainty 4 6 4 7 Internal Time Base Aging Rate Test 4 6 Internal Time Base Aging Rate Test with Absolute Time Model 300 4 7 Internal Time Base Aging Rate Te...

Page 6: ...de unlocked FM Accuracy 4 50 4 16 FM Harmonic Distortion Tests 4 50 Ext Low Noise FM THD 4 50 Int Low Noise FM THD 4 51 4 17 FM Mode Residual FM and Incidental AM Tests 4 52 Ext Low Noise FM Mode Residual FM Incidental AM 4 52 4 18 FM Mode Carrier Offset relative to CW mode 4 53 Ext Low Noise FM Mode Carrier Offset 4 53 Perform Ext FM Offset Calibration to Minimize DC Offsets 4 53 Int Low Noise FM...

Page 7: ...e 4 82 AM SEN_DAC Setting External Source Linear Mode 4 83 AM External Mod LOG Verification Linear Mode 4 83 4 25 Pulse Modulation Tests with the Sampling Oscilloscope 4 84 Pulse Rise Time Fall Time and Overshoot 4 85 Pulse Power Accuracy 4 87 Pulse On Off Ratio 4 89 4 26 Pulse Modulation Tests with the 86100C Oscilloscope 4 91 Pulse Rise Time Fall Time and Overshoot Measurement 4 92 Pulse Power A...

Page 8: ...6 1 Introduction 6 1 6 2 Replaceable Parts 6 1 6 3 Adjustment and Verification After Replacing an Assembly 6 4 6 4 Semi Rigid Cable Installation Standard Model 6 6 6 5 SMA Cable Installation Standard Model 6 7 6 6 Frequency Extension Module FEM Cable Installation 6 8 6 7 Option 13 Configuration 6 9 6 8 Option 3 and Option 56 Configuration 6 10 6 9 Option 23 Configuration 6 11 6 10 Removal Procedur...

Page 9: ...MG362x1A MM PN 10370 10386 Rev B Contents 7 Table of Contents Continued A 1 Introduction A 1 A 2 Uncertainty Specifications A 1 A 3 Adapter Attenuator and Cable Insertion Loss A 1 A 4 Test Records A 1 ...

Page 10: ...10 0 GHz A 31 Power Level Accuracy Test 12 0 GHz A 32 Power Level Accuracy Test 14 0 GHz A 33 Power Level Accuracy Test 16 0 GHz A 34 Power Level Accuracy Test 18 0 GHz A 35 Power Level Accuracy Test 20 0 GHz A 36 Power Level Accuracy Test 22 0 GHz A 37 Power Level Accuracy Test 24 0 GHz A 38 Power Level Accuracy Test 27 0 GHz A 39 Power Level Accuracy Test 28 0 GHz A 40 Power Level Accuracy Test ...

Page 11: ...de Modulation Test Option 12 A 62 Pulse Modulation Tests Option 12 A 65 Pulse Modulation Tests Option 12 A 66 Pulse Modulation Tests Option 12 A 67 Pulse Modulation Tests Option 12 A 68 Pulse Modulation Tests Option 12 A 69 Pulse Modulation Tests Option 12 A 70 Appendix B Instrument Messages B 1 Introduction B 1 B 2 Error Messages B 1 B 3 Informational Messages B 3 B 4 Warning Messages B 5 B 5 Sel...

Page 12: ...Contents 10 PN 10370 10386 Rev B MG362x1A MM ...

Page 13: ...ion is included concerning level of maintenance replaceable subassemblies and RF components exchange assembly program and preventive maintenance Static sensitive component handling precautions and lists of exchangeable subassemblies and recommended test equipment are also provided 1 4 Description The series MG362x1A is a microprocessor based synthesized signal source with high resolution phase loc...

Page 14: ...intenance Calibration Troubleshooting the instrument to a replaceable subassembly or RF component Repair by replacing the failed subassembly or RF component Preventive Maintenance The MG362x1A signal generator care and preventive maintenance consists of cleaning the unit and inspecting and cleaning the RF connectors on the instrument and all accessories Clean the signal generator with a soft lint ...

Page 15: ...Most instrument failures are field repairable by replacing the failed subassembly or RF component Detailed instructions for removing and replacing failed subassemblies and components are provided in Chapter 6 Assemblies Removal and Replacement Calibration The MG362x1A may require calibration after repair Refer to Chapter 4 Performance Verification for a listing of requirements and procedures 1 9 E...

Page 16: ...1 9 ESD Requirements General Information 1 4 PN 10370 10386 Rev B MG362x1A MM ...

Page 17: ...erial terminal port These interfaces are all located on the rear panel The CPU is directly linked via a dedicated data and address bus to the front panel assembly the B4 Auxiliary Analog Instruction Module the B6 ALC Module the B11 Synthesizer Module B14 Referenced Synthesizer Module and B6 YIG Module The B2 Module contains circuits that perform parallel to serial and serial to parallel data conve...

Page 18: ... AUX I O connector The A5 Auxiliary Module or the optional B4 Analog Instruction Module provides a 0V to 10V ramp signal to the rear panel HORIZ OUT connector a V GHz signal to the rear panel AUX I O connector and a SLOPE signal to the B5 ALC Module for slope vs frequency correction of the RF output power The rear panel EXT ALC IN AM IN and AM OUT are routed through the rear panel PCB and then thr...

Page 19: ...nal Description 2 2 Major Subsystems MG362x1A MM PN 10370 10386 Rev B 2 3 Figure 2 1 Block Diagram of a Typical MG36221A Synthesized Signal Generator B12 Regulator PCB 3 84216 3 Coupler B2 B1 B14 B6 B8 B5 B10 ...

Page 20: ...ajor Subsystems Functional Description 2 4 PN 10370 10386 Rev B MG362x1A MM Figure 2 2 Block Diagram of a Typical MG36241A Synthesized Signal Generator Regulator PCB Coupler B7 B5 B12 B13 B6 B11 B9 B2 B1 B10 ...

Page 21: ...rnal leveling before being routed to the output connector J3 The detected RF sample is routed to the ALC Module Digital control signals from the CPU Module are routed through the auxiliary PCB RF Outputs 2 2 GHz to 20 GHz Refer to the block diagrams of the RF Deck shown in Figure 2 3 on page 2 12 through Figure 2 4 on page 2 13 for the following descriptions The MG362x1A uses one YIG tuned oscilla...

Page 22: ...0 GHz RF signal is multiplexed by the PIN switches to the FEM output at connector J2 RF signals input to the FEM of 20 GHz are multiplexed through by the PIN switches of the FEM to the output connector J2 From J2 the RF signal goes to the directional coupler Option 15 adds an amplifier between the FEM J2 output and the directional coupler Frequency Switching Speed The frequency switching speed is ...

Page 23: ...iplet or quadruplet pulse trains at variable pulse rates widths and delays It operates at two selectable clock rates 10 MHz and 100 MHz In addition the pulse generator produces a sync pulse and video pulse output that goes to the rear panel and a sample hold signal that goes to the B5 ALC Module The sync pulse output is for synchronizing auxiliary instruments to the internally generated pulse the ...

Page 24: ...al modulating signal comes from the rear panel FM IN FM IN input connector the internal modulating signal comes from the B3 Function Generator Module Circuits on the B3 FM Module adjust the modulating signal for the M sensitivity selected convert the modulating signal to a M signal by differentiation and then sum it into the YIG loop FM control path There it phase modulates the RF output signal by...

Page 25: ...ead of the internal level detector The signal from the external detector or power meter goes to the B5 ALC Module assembly from the rear panel input The ALC controls the RF power output level as previously described ALC Slope During analog sweeps a slope vs frequency signal from the B4 Analog Instruction Module is summed with the level reference and detector inputs into the ALC loop The Slope DAC ...

Page 26: ...mbly and a directional coupler Beyond that the configuration of the RF deck assembly varies according to the particular instrument model and options installed Refer to the block diagrams in Figure 2 3 on page 2 12 through Figure 2 4 on page 2 13 which show the various RF deck configurations and include all of the common RF components found in the series MG362x1A RF deck assemblies Refer to these b...

Page 27: ...l to the down converter A coupler in the B12 switched filter path provides this RF signal which is routed through a 8 5 GHz low pass filter to connector J3 and then to the down converter The 0 008 to 2 GHz RF signal output from the down converter is routed back to the B12 assembly connector J1 and then multiplexed through the same path to the switched filter output After routing through the approp...

Page 28: ...ter Assembly 8 5 GH z LPF 20 GHz LPF 2 2 2 1500 2200 MHz 1050 1500 MHz 700 1050 MHz 500 700 MHz 350 500 MHz 250 350 MHz 175 250 MHz 125 175 MHz 87 5 125 MHz 62 5 87 5 MHz 43 75 62 5 MHz 31 25 43 75 MHz 22 5 31 25 MHz 17 5 22 5 MHz 12 5 17 5 MHz 8 0 12 5 MHz n Digital Down Converter Assembly B10 Level Control Pulse Control In Switch Control 2 10 GHz RF Output 0 008 to 2 2 GHz 17 dBm RF Output 0 008...

Page 29: ... x 2 20 25 GHz BPF 25 32 GHz BPF 32 40 GHz BPF 20 GHz LPF Switched Doubler Module Models MG36241A only Diplexer A B C Loss A C 2 dB Loss B C 2 dB J2 2 2 2 1500 2200 MHz 1050 1500 MHz 700 1050 MHz 500 700 MHz 350 500 MHz 250 350 MHz 175 250 MHz 125 175 MHz 87 5 125 MHz 62 5 87 5 MHz 43 75 62 5 MHz 31 25 43 75 MHz 22 5 31 25 MHz 17 5 22 5 MHz 12 5 17 5 MHz 8 0 12 5 MHz n Digital Down Converter Assem...

Page 30: ...2 6 RF Deck Assemblies Functional Description 2 14 PN 10370 10386 Rev B MG362x1A MM ...

Page 31: ...e instrument The test equipment setup is critical to making accurate measurements In some cases you may substitute certain test equipment having the same critical specifications as the test equipment indicated in the test equipment list refer to Measurement Uncertainty on page 4 6 Note Ambient temperature within 20 to 26 degC 68 to 79degF MG362x1A covers on internal temperature stable requires abo...

Page 32: ...90A 0754 FIXED ATTENUATOR 6 dB Attenuation ANRITSU SC8576 Phase Noise PHASE NOISE ANALYZER Frequency 9 kHz 43 5 GHz Phase noise sensitivity better than MG362x1A specs MU PHASE NOISE ANALYZER FSWP50 Level Calibration THERMAL POWER SENSOR Frequency 9 kHz 43 5 GHz ROHDE SCHWARZ NRP67T FIELDMASTER PRO SPA Frequency 9 kHz 43 5 GHz ANRITSU MS2090A 0754 FIXED ATTENUATOR Frequency 9 kHz 43 5 GHz 6 dB Atte...

Page 33: ... PRO SPA Frequency 9 kHz 43 5 GHz ANRITSU MS2090A 0754 Pulse Modulation WAVEFORM GENERATOR Up to 20MHz KEYSIGHT 33x Series DCA X OSCILLOSCOPE N A KEYSIGHT N1000A SAMPLING HEAD 80 Giga Sample Seconds KEYSIGHT N1045B FIXED ATTENUATOR 6 dB Attenuation ANRITSU SC8576 FIXED ATTENUATOR 10 dB Attenuation ANRITSU SC8577 Low Pass Filter 400 MHz RLC ELECRONICS P N F 10 400 R Table 3 2 Adapter1 85 mm m to 2 ...

Page 34: ...mm m 2 92 mm f 2 92 mm f 0 0001 to 10 GHz 33 0 022 32 0 025 10 05 to 20 GHz 34 0 020 32 0 025 20 5 to 30 GHz 25 0 056 23 0 071 30 5 to 43 5 GHz 23 0 071 22 0 079 Table 3 5 Adapter 2 92 mm m to N f part number 34NFK50 Maximum Permissible Tolerances Frequency Return loss dB Reflection Coefficient Return loss dB Reflection Coefficient Connector Type 2 92 mm m 2 92 mm m N f N f 0 0001 to 4 GHz 40 0 01...

Page 35: ... 22 0 079 23 0 071 40 5 to 43 5 GHz 17 0 141 18 0 126 Table 3 8 Armored Semi Rigid Test Port Cable 2 92 mm Connector Female to 2 92 mm Connector Male part number 3670K50 2 Maximum Permissible Tolerances Frequency Return loss dB Reflection Coefficient Return loss dB Reflection Coefficient Connector 2 92 mm m 2 92 mm m 2 92 mm f 2 92 mm f 0 0001 to 10 GHz 27 0 045 27 0 045 10 05 to 20 GHz 21 0 089 2...

Page 36: ... viewing data or specifications and a toolbar for running and aborting tests The main panel has a tree view control for the test list on the left and a text box control for the activity log on the right At the bottom of the application is a status bar that displays the application mode the test library version the name of the station where the application is installed and the source database 1 Too...

Page 37: ...s the asset s characterization parameters for the test All test equipment assets used for testing must be entered manually as shown in Figure 3 3 Once entered the Station Asset Utility database will retain the asset information and recall it the next time the asset is being used Station Asset Utility Setup Use the Station Asset Utility menu to add test equipment assets shown in Figure 3 2 Test Pro...

Page 38: ...Figure 3 3 2 Enter the asset serial number of the test equipment where applicable 3 If a test requires characterization for a component check the box in the Characterized Required column 4 Select the Interface Type 5 Enter the asset IP address of test equipment where applicable 6 Set the Communication Parameters on page 3 9 7 Press the save button when all entries are complete 8 Press the Exit but...

Page 39: ...parameters as follows 1 Set the Interface as TcpipSocket 2 Enter the MG362x1A IP Address 3 Enter the Port as 9001 4 Press the Add DUT button When all the test equipment assets have been entered and the communication parameters are set the automated testing is ready to perform testing 1 TcpipSocket 2 IP Address of MG362x1A 3 Port set to 9001 4 Add DUT Button Figure 3 4 Set Communication Parameters ...

Page 40: ...t the MG362x1A to the ATE program 2 Power on the MG362x1A 3 Confirm or add the IP Address of MG362x1A 4 Press the Add DUT button 5 Set up the communication as described in Set the Communication Parameters on page 3 9 6 Click to select the tests to run from the test list 7 Connect any test equipment that is prompted by the ATE program 8 Press the Run Test button The testing will sequence through th...

Page 41: ...on 3 4 Station Asset Utility on page 3 7 Test Procedure This calibration procedure may require changing testing equipment setups The program will pause and display the next test setup before the testing is prompted to continue 1 Connect the MG362x1A to the network and power on 2 Open the Anritsu Test Executive ATE software program 3 Select Initial Cal from the menu 4 Setup test equipment as descri...

Page 42: ...al testing is shown in Table 3 11 Test Setup 1 Connect the equipment as shown in Figure 3 6 2 Connect the MG362x1A rear panel 10 MHz REF OUT to the spectrum analyzer s EXT REF IN Note For recording test data for this section refer to Appendix A Test Records Table 3 11 Harmonic and Spurious Testing Test Equipment Model Number Critical Specification Recommended Manufacturer Model NRP67T ROHDE SCHWAR...

Page 43: ... PN 10370 10386 Rev B 3 13 Test Procedure 1 Power on the MG362x1A 2 Open the Anritsu Test Executive ATE software program 3 Follow DUT setup procedure 4 Select Spurs and Harmonics test from the menu 5 Click Run Test 6 Follow test instruction prompts to complete test ...

Page 44: ...and power on 2 Open the Anritsu Test Executive ATE software program 3 Follow DUT setup procedure 4 Select Phase Noise test from the menu 5 Click Run Test 6 Follow test instruction prompts to complete test Note For recording test data for this section refer to Appendix A Test Records Table 3 12 Recommend Equipment List Model Number Critical Specification Recommended Manufacturer Model FSWP50 PHASE ...

Page 45: ...et number as described in Section 3 4 Station Asset Utility on page 3 7 The equipment required to perform Power Level Accuracy and Flatness testing is shown in Table 3 12 Note For recording test data for this section refer to Appendix A Test Records Table 3 13 Equipment List for Level Calibration Model Number Critical Specification Recommended Manufacturer Model THERMAL POWER SENSOR Frequency 9 kH...

Page 46: ...network and power on 2 Open the Anritsu Test Executive ATE software program 3 Select Level Cal test from the menu 4 Click Run Test 5 Follow test instruction prompts to complete test Figure 3 8 Equipment Setup for Level Calibration Caution To prevent damage to the power sensor use a fixed attenuator when measuring power levels above 20 dBm MG362x1A 10 MHz REF Out RF Out RF Output Ŷ RF On Off Unleve...

Page 47: ...ds Table 3 14 Pulse Modulation Test Model Number Critical Specification Recommended Manufacturer Model WAVEFORM GENERATOR Up to 20MHz KEYSIGHT 33x Series DCA X OSCILLOSCOPE N A KEYSIGHT N1000A SAMPLING HEAD 80 Giga Sample Seconds KEYSIGHT N1045B FIXED ATTENUATOR 6 dB Attenuation ANRITSU SC8576 FIXED ATTENUATOR 10 dB Attenuation ANRITSU SC8577 LOW PASS FILTER 400 MHz RLC ELECRONICS P N F 10 400 R F...

Page 48: ...equire changing testing equipment setups The program will pause and display the next test setup before the testing is prompted to continue Connect the equipment as shown in Figure 3 9 This calibration measures the external pulse performance for Pulse rise fall overshoot Pulse power accuracy Pulse on off ratio 1 Connect the MG362x1A to network and power on 2 Open the Anritsu Test Executive ATE soft...

Page 49: ...deo FeedThru test from the menu External Video FeedThru 4 Click Run Test 5 Follow test instruction prompts to complete test Internal Video FeedThru This calibration measures the pulse video feedthru using the external input from a waveform generator Connect the equipment as shown in Figure 3 9 Test Procedure This calibration procedure may require changing testing equipment setups The program will ...

Page 50: ...on 3 4 Station Asset Utility on page 3 7 Set up equipment as shown in Figure 3 10 Table 3 15 Equipment Required Model Number Critical Specification Recommended Manufacturer Model WAVEFORM GENERATOR Up to 20MHz KEYSIGHT 33x Series DIGITAL STORAGE OSCILLOSCOPE 100 MHz 4 Ch 2 GS s TEKTRONIX TDS2014C MULTIMETER 2 6 5 Digits of resolution AGILENT 34401A PHASE NOISE ANALYZER Frequency 9 kHz 43 5 GHz Pha...

Page 51: ...ter status on Debug GUI 3 Read AM Meter Output and recorded as AM_OFFSET 4 Turn AM On Select AM External source and Linear type 5 Connect Waveform Generator waveform generator to the Synth AM Input and Multimeter thru a BNC Tee 6 Set waveform generator to 1 0V peak 2 0V pk pk and 1 kHz sinewave 7 Adjust amplitude until the AC voltage reading is 0 707 0 01V 8 Read AM Meter Output Record AC voltage ...

Page 52: ... External source and Linear type 2 Connect waveform generator to the Synth AM Input and Multimeter thru a BNC Tee 3 Set waveform generator to 1 0V peak 2 0V pk pk and 1 kHz sinewave 4 Adjust amplitude until the AC voltage reading is 0 707 0 01V 5 Read AM Meter Output 6 Compute AM Meter Output AM_OFFSET AC voltage reading 2 AM_OFFSET 7 Select AM Internal source and Linear type 8 Set waveform to 1 k...

Page 53: ...ut and Multimeter thru A BNC Tee 4 Set waveform generator to 1 0V peak 2 0V pk pk and 1 kHz sinewave 5 Adjust amplitude until the AC voltage reading is 0 707 0 01V 6 Set AM_CAL_DAC to 580 7 Adjust AM_SEN_DAC until the first sideband suppression at 1 kHz offset is 20 log 0 9 2 6 9 0 2 dBc 8 Measure second sideband suppression at 2 kHz offset 9 Repeat Step 6 to Step 9 with AM_CAL_DAC set to 600 620 ...

Page 54: ...Tee 5 Set waveform generator output to DC signal 6 Adjust waveform generator amp until DC voltage reading on the Multimeter is 0 5 0 005V Record waveform generator amp as Vpos 7 Adjust waveform generator amp until DC voltage reading on the Multimeter is 0 5 0 005V Record waveform generator amp as Vneg 8 Set AM_CAL_DAC to AM_CAL_LIN_25M 9 Toggle waveform generator amp between Vpos and Vneg 10 Adjus...

Page 55: ... a BNC Tee 5 Set waveform generator output to DC signal 6 Adjust waveform generator amp until DC voltage reading on the Multimeter is 0 5 0 005V Record waveform generator amp as Vpos 7 Adjust waveform generator amp until DC voltage reading on the Multimeter is 0 5 0 005V Record waveform generator amp as Vneg 8 Set Center Freq to DUT freq and Span to 0 Hz on Spectrum Analyzer 9 Toggle waveform gene...

Page 56: ...ter thru a BNC Tee 5 Set waveform generator output to DC signal 6 Adjust waveform generator amp until DC voltage reading on the Multimeter is 0 5 0 005V Record waveform generator amp as Vpos 7 Adjust waveform generator amp until DC voltage reading on the Multimeter is 0 5 0 005V Record waveform generator amp as Vneg 8 Set Center Freq to DUT freq and Span to 0 Hz on Spectrum Analyzer 9 Toggle wavef...

Page 57: ... up equipment as shown in Figure 3 10 Gain limit 40 dB V 20 dB V for downconverter band 1 Set to ALC mode internal closed loop 2 If step attenuator option installed put into decoupled mode 3 Set Power Level 0 dB 4 Turn on AM Internal mode and Linear mode 5 Go to first frequency band of interest see frequency plan for list of bands 6 Step output frequency by 100 MHz until max gain frequency in band...

Page 58: ...hod for Finding Roots calculations The modulation index is then converted to the actual deviation and then into FM ΦM accuracy Enter the required test equipment asset number as described in Section 3 4 Station Asset Utility on page 3 7 Table 3 23 Equipment List for Initial Calibration Model Number Critical Specification Recommended Manufacturer Model WAVEFORM GENERATOR Up to 20MHz KEYSIGHT 33x Ser...

Page 59: ... Figure 3 11 FM Calibration Setup MG362x1A DUT RF In Waveform Generator To FM M IN RF Output ȍ RF On Off Unleveled Output 29 dBm max Reverse 27 dBm 0 VDC FREQ LEVEL USER SELECT 0 1 2 3 4 5 6 7 8 9 MG36221A Signal Generator 20 GHz FSWP50 Multimeter 10 MHz REF Out 6 dB Attenuator 10 MHz REF In REF Input RF In MS2090A 0754 Alternate Spectrum Analyzer ...

Page 60: ...nverge rapidly Ext FM ADC Offset Requires Freq Ref Mod Processor Connect equipment as shown in Figure 3 11 1 Disconnect any cable to the Ext FM input 2 Set PLLmod mode 2 LNFM Mod source 1 External FM_HPF 0 DC coupled 3 Set FM_POL 1 not inverted FM_Mute 0 not muted 4 Set FM meter averaging time 1 sec 5 Allow 1sec for transients to settle Read meter average output to a resolution of 1LSB To see mete...

Page 61: ...peak to peak output 9 Calculate to 3 decimal places 10 GFMext 0 707 Step 3 DVM reading Step 4 result Step 6 result 11 GFMext value should fall within a range of 0 950 to1 050 12 Save GFMext value to the FM cal table This cal value will be re applied to the GFMext register at MG362x1A boot up and reset Rear Panel FM Waveform Amplitude Requires Freq Ref Mod Processor Connect equipment as shown in Fi...

Page 62: ...C data The ADC is an LTC2365 After CS falling edge the ADC puts out 16 serial bits comprised of 2 leading zeros then 12 bits of data MSB first then two trailing zeros Observe the 12 bit ADC output to get an indication of phase error across the FM PLL PFD Initial YL_MON output for 200 kHz mod rate and 20 kHz deviation should be near 0 4 This step calibrates YIG FM tuning sensitivity in the FM Tune ...

Page 63: ... SYN_SHIFT_REG_CR bit 30 PHASE_MON_EN 1 so U93 will monitor FM PLL PFD phase deviation Use YLMON_CS and SCLK to clock out the YLMON ADC data The ADC is an LTC2365 After CS falling edge the ADC puts out 16 serial bits comprised of 2 leading zeros then 12 bits of data MSB first then two trailing zeros Observe the 12 bit ADC output to get an indication of phase error across the FM PLL PFD Initial YL_...

Page 64: ...nds to fill in then set Sweep Not Continuous 5 SPA Markers Marker Table ON Markers Peak Search Select Marker 1 Peak Search Peak Search OFF 6 Select Marker 2 Set Marker Frequency 4 875 GHz Mode Delta Delta Reference Marker 1 Increase Marker 2 Frequency in minimum increments about 0 25 MHz until Marker 2Δ1 Y value from the markers table is 3 dB then decrease Marker 2 frequency by one increment such ...

Page 65: ...conds to fill in then set Sweep Not Continuous 5 SPA Markers Marker Table ON Markers Peak Search Select Marker 1 Peak Search Peak Search OFF 6 Select Marker 2 Set Marker Frequency 11 875 GHz Mode Delta Delta Reference Marker 1 Increase Marker 2 Frequency in minimum increments about 0 25 MHz until Marker 2Δ1 Y value from the markers table is 3 dB then decrease Marker 2 frequency by one increment su...

Page 66: ...3 11 FM and Phase Modulation Calibration Calibration 3 36 PN 10370 10386 Rev B MG362x1A MM ...

Page 67: ...strument performance We recommend that you copy these pages and use them to record the results of your initial testing of the instrument These initial test results can later be used as benchmark values for future tests of the same instrument 4 3 Connector and Key Notation The test procedures include many references to equipment interconnections and control settings For all MG362x1A references spec...

Page 68: ...eyboard Monitor Network The computer must be dedicated during calibration and verification activities Dell or other common source National Instruments GPIB interface GPIB interface for computer National Instruments Anritsu RF verification and calibration software Anritsu 2300 497 Spectrum Analyzer Frequency 100 kHz to 50 GHz Resolution bandwidth 10 Hz Agilent 8565EC Phase noise measurement system ...

Page 69: ...ctor Power range 30 to 20 dBm Anritsu model SC7430 or Anritsu model SC7570 or Anritsu model SC7770 Power sensor for power meter Frequency 100 kHz to 18 GHz N Connector Power range 55 20 dBm Anritsu model SC7400 Adapter for power sensor calibration N m to K f Anritsu model 34NKF50 Adapters for power sensor calibration N m to V f Common source or Alternate to achieve N m to V f Anritsu model 34NK50 ...

Page 70: ...odel 41KC 3 41KC 6 41KC 10 or 41KC 20 Must be calibrated See footnote b Attenuator for instrument model MG362x1A Frequency Range DC to 67 GHz Attenuation 3 6 10 and 20 dB sizes and counts are determined depending on options and maximum output power of instrument Anritsu part number SC7880 V set of attenuators 41V 3 41V 6 41V 10 41V 20 Which is calibrated to data point in footnote c or Anritsu mode...

Page 71: ...N male to K female Adapter N male to K female Anritsu 34NKF50 Must be calibrated See footnote c Armored Semi Rigid Test Port Cable K Connector Female to K Connector Male Armored Semi Rigid Test Port Cable K Connector Female to K Connector Male Anritsu 3670K50 2 Must be calibrated See footnote b d Armored Semi Rigid Test Port Cable V Connector Female to V Connector Male Armored Semi Rigid Test Port...

Page 72: ...s RF output frequency has stabilized usually 7 to 30 days Once stabilized the change in reference oscillator frequency should remain within the aging rate if 1 the time base oven is not allowed to cool 2 the instrument orientation with respect to the earth s magnetic field is maintained 3 the instrument does not sustain any mechanical shock and 4 ambient temperature is held constant This test shou...

Page 73: ...ignal to the frequency reference front panel 10 MHz input 3 Wait approximately 90 minutes default setting until the FMFOM on the frequency reference display decreases from 9 to 1 The default setting is recommended to achieve optimum measurements 4 The frequency error in the signal under test is displayed in ps s picoseconds second For example an error of 644681 ps s is 644681 10 12 or 6 44681 10 7...

Page 74: ...ot locked and testing must be halted If no appears then the unit is not connected properly 5 Confirm that the measurement count has started to increment This will be displayed in row 1 columns 20 through 29 of the display Allow approximately 5 minutes for everything to stabilize 6 Record the date time of the test starting and the frequency offset displayed in row 1 column 9 through 17 on the test ...

Page 75: ...nel 10 MHz REF OUT to the spectrum analyzer s external reference input 2 Connect the MG362x1A RF Output to the spectrum analyzer s RF input 3 Set up the spectrum analyzer as follows a Press the PRESET key b Press AUX CTRL c Press Rear Panel d Press 10MHz and set to EXT Note Before performing this procedure ensure that all test equipment is calibrated Refer to the manufacturer s test equipment manu...

Page 76: ...options in the test record d Press the SPAN key and set to the first appropriate test frequency s SPAN value based on model and options in the test record 4 Press the PEAK SEARCH key then select MARKER DELTA 5 Press the FREQUENCY key on the spectrum analyzer and enter next harmonic frequency listed in the test records 6 Press the PEAK SEARCH key 7 Record the reading from the spectrum analyzer into...

Page 77: ...en the current power level parameter for editing d Set L1 to 10 dBm or to the maximum specified power level whichever is less Refer to Appendix B Technical Data Sheet for the maximum specified power levels 2 Set up the spectrum analyzer as follows a Press the AMPLITUDE key b Press REF LVL and enter the current power level setting L1 of the MG362x1A c Press the FREQUENCY key d Press Start Freq e En...

Page 78: ... spectrum analyzer as follows a Press the AMPLITUDE key b Press REF LVL and enter the current power level setting L1 of the MG362x1A c Press the FREQUENCY key d Press Center Freq e Enter the current spectrum analyzer center frequency from the test record f Press SPAN g Enter the current spectrum analyzer span frequency from the test record h Press the BW key i Press Res BW to MAN j Enter the curre...

Page 79: ...uts of the splitter to the RF input of the E5052B h Connect one of the outputs of the splitter to the RF input of the down converter Table 4 3 Recommend Equipment List Recommend Part Number Quantity Description Vendor K222B 1 Insertable F F Anritsu 34NKF50 1 N Male to K Female Adapter Anritsu K241C 1 Power Splitter Anritsu SC3855 1 3670K50 2 KM KM flex cable Anritsu E5052B 1 Signal Source Analyzer...

Page 80: ...ouch Marker 1 enter 10 then press X1 to obtain 10 Hz Touch Marker 2 enter 100 then press X1 to obtain 100 Hz Touch Marker 3 enter 1 then press k M to obtain 1 kHz Touch Marker 4 enter 10 then press k M to obtain 10 kHz Touch Marker 5 enter 100 then press k m to obtain 100 kHz Touch Marker 6 enter 1 then press M u to obtain 1 MHz Figure 4 4 Equipment Setup for Single Sideband Phase Noise Test with ...

Page 81: ...Test Procedure 1 Refer to the test records for Phase Noise Use the correct table based on the options installed in the MG362x1A 2 Determine the test frequency 3 Set the MG362x1A F1 to the frequency called out in the test records 4 Press Input on the E5052B a If the test frequencies are from 10 MHz to 5 GHz Touch Downconverter RF input E5053A This selects the direct measurement into the E5053A Touc...

Page 82: ...h 9G 26 5GHz b Set IF Gain to 50 dB if DUT CW frequency 5 GHz 40 dB if DUT CW frequency 5GHz c Touch Nominal Frequency and enter the test frequency from the test record 6 Press ATTN a Set to 0 dB if DUT CW frequency is 5 GHz b set to 10 dB if DUT CW frequency 5GHz 7 Press Trigger a Touch Continuous b Touch Single At the upper right of the screen the E5052B should have the approximate test frequenc...

Page 83: ...Performance Verification 4 9 Single Sideband Phase Noise Test MG362x1A MM PN 10370 10386 Rev B 4 17 Figure 4 5 E5052B Display Figure 4 6 Spurious List ...

Page 84: ...e the Spurious List window 11 Press Trace View a Press Spurious note it may be required to touch the down arrow at the bottom of the right screen to locate b Touch OMIT 12 Record phase noise marker values into the test records 13 Refer to the next frequency in the Single Sideband Phase Noise Test 14 Press Trigger Continuous 15 Return to Step 2 and repeat this test until all test frequencies are ve...

Page 85: ...ls above 19 dBm 3 Connect the special AUX I O interface cable Anritsu PN 806 97 or 806 7 to the MG362x1A rear panel AUX I O connector Connect the cable BNC connectors as follows a Connect the cable labeled SEQ SYNC to the power meter rear panel INPUT 1 DIGITAL connector b Connect the cable labeled HORIZ OUT to power meter rear panel INPUT 2 ANALOG connector Note Before performing this procedure en...

Page 86: ... or maximum of the power meter h Press any hard key to begin the measurement 2 Set up the MG362x1A as follows a Reset the instrument by pressing SYSTEM then Reset After reset the CW menu is displayed b If the DUT has a step attenuator Option 2 1 Press Level to open the Level Control menu 2 Press ALC Mode then press Attenuate to open the Attenuator Control menu 3 Press Decouple to decouple the atte...

Page 87: ...V GHz until V GHZ is displayed d Setup the minimum V GHz range by pressing Setup Start F e Enter the minimum frequency of the MG under test or minimum of the power meter f Setup the maximum V GHz range by pressing Setup Stop F g Enter the maximum frequency of the MG under test or maximum of the power meter h Press any hard key to begin the measurement 2 Set up the MG362x1A as follows a Reset the i...

Page 88: ...he MG362x1A RF Output to the RF input of the measuring receiver 3 For RF frequencies above 2400 MHz a Connect the RF Output of the LO and the MG362x1A to the mixer s PN 60 114 L port and R port respectively using low loss cables b Connect the mixer s I port to the RF input of the measuring receiver 4 Using a BNC tee connect the 10 MHz reference output from the measuring receiver to the MG362x1A s ...

Page 89: ...setup of the MG362x1A as follows a Reset the instrument by pressing SYSTEM then Reset After reset the CW menu is displayed 2 Initial setup of the LO a Reset the instrument by pressing System then Reset After reset the CW menu is displayed b Press LEVEL to open the current power level parameter for editing c Set L1 to 6 dBm Figure 4 10 Equipment Setup for Power Level Accuracy and Flatness Tests Bel...

Page 90: ...q key and enter the CW frequency listed in the test record b Press the Offset key select the offset valve enter 0 c Read the measured value and calculate the line and mixer loss offset as follows d Test record reading at 40 dBm for the current test frequency Receiver Reading Offset e The offset value should be a positive number f Press the Offset key and select Offset On g Select Offset Value and ...

Page 91: ...ar panel INPUT 2 ANALOG connector 4 Set up the power meter as follows a Reset the power meter by pressing System Setup more PRESET RESET b Configure the power meter to perform power measurements by pressing Sensor Setup MODE until Default is displayed c Configure the power sensor s calibration factor source by pressing Sensor CalFactor SOURCE until V GHZ is displayed d Setup the minimum V GHz rang...

Page 92: ...en the current power level parameter for editing h Set L1 to the power level indicated in the test record i Return to the Manual Sweep menu by pressing the Previous soft key j At the Manual Sweep menu press Number of Steps to open the number of steps parameter for editing k Enter the number of steps called out in the test records l Press the Frequency Control soft key 2 Using the rotary data knob ...

Page 93: ...or Connect the cable BNC connectors as follows a Connect the cable labeled SEQ SYNC to the power meter rear panel INPUT 1 DIGITAL connector b Connect the cable labeled HORIZ OUT to the power meter rear panel INPUT 2 ANALOG connector 4 Set up the power meter as follows a Reset the power meter by pressing System Setup more PRESET RESET b Configure the power meter to perform power measurements by pre...

Page 94: ...d k Return to the Manual Sweep menu by pressing the Previous soft key l On the Manual Sweep menu press the Num of Steps soft key to open the number of steps parameter for editing m Set the number of steps to 200 n Press the Frequency Control soft key 2 Using the rotary data knob sweep the MG362x1A through the full frequency range Measure the minimum power meter readings and record the values in th...

Page 95: ...s then converted to the actual deviation or dB These tests quantify how the modulating input signal affects the signal generator s RF output Equipment Required The equipment required to perform Initial Calibration is shown in Figure 4 4 Enter the required test equipment asset number as described in Section 3 4 Station Asset Utility on page 3 7 Table 4 4 Equipment List for Initial Calibration Model...

Page 96: ... FM Time domain and Summary windows will display Set Frequency 5 GHz Set Ampt RF Atten Manual 10 dB If Spectrum tab is not visible at top of screen then Mode New Channel Spectrum This brings up the spectrum analyzer display and tab If Spectrum tab is visible press the tab to enter Spectrum mode Set Frequency 5 GHz and Ampt RF Atten Auto Ref Level 10 dBm MG362x1A Frequency 5 GHz Level 15 dBm RF On ...

Page 97: ...e deviation 10 133 MHz to assure DUT deviation is 10 MHz Test Setup Connect equipment as shown in Figure 4 11 on page 4 30 FSWP Tab Analog Demod mode This opens the FM Time Domain window and Result Summary window Set Demod BW 40 MHz Meas Time 10 msec Scale Config 5 MHz div Trace Config Trace 1 Clear Write Linear Smoothing 1 Trigger button Set FM Offline as the trigger source Sweep Continuous Exter...

Page 98: ... 11 MHz V Wait 10 msec 14 Go to Step 31 15 Wait approx 100 msec for FSWP to complete a full cycle of RMS FM measurement 16 Note FM RMS Deviation shown in the FSWP Summary window 17 Calculate Peak Deviation 1 414 RMS deviation 18 If Peak Deviation is 10 133 MHz increase FM sensitivity to 13 MHz V Otherwise go to Step 30 19 Check PLL lock status If unlocked 20 Report Lock Fail for the current mod ra...

Page 99: ...RF frequency per the following list starting at the lowest freq 2 6 GHz 5 GHz 10 GHz 20 GHz At each RF frequency test max FM deviation for each of the mod rates in the following list 10 kHz 20 kHz 50 kHz 100 kHz 200 kHz 500 kHz 1 MHz 2 Set external function generator Frequency mod rate from the list Set FM ON Wait 10 msec 3 Check PLL lock status If unlocked 4 Report Lock Fail for the current mod r...

Page 100: ... mod index Mod index Peak phase deviation in radians FM deviation Mod rate mod index and mod rate is precisely known so FM deviation can be accurately determined from the phase deviation measurement FSWP phase deviation measurement uncertainty is 0 0002 1 measured deviation rad Allow 1 margin for DUT variation For example 10 MHz FM deviation and 2 MHz rate gives mod index 5 i e peak phase deviatio...

Page 101: ...msec for FSWP to complete a full cycle of RMS Phase Deviation measurement 16 Note PM RMS Deviation shown in the FSWP Summary window 17 Calculate Peak FM Deviation 1 414 RMS Phase deviation mod rate 18 If Peak FM Deviation is 10 1024 MHz increase FM sensitivity to 13 MHz V Otherwise go to Step 30 19 Check PLL lock status If unlocked 20 Report Lock Fail for the current mod rate Set FM OFF 21 Set FM ...

Page 102: ...uency test max FM deviation for each of the mod rates in the following list 2 MHz 5 MHz 7 MHz 8 MHz 2 Set FM mod rate mod rate from the list Set FM ON Wait 10 msec 3 Check PLL lock status If unlocked 4 Report Lock Fail for the current mod rate Set FM OFF 5 Wait 10 msec 6 Go to step Step 31 7 Wait approx 150 msec for FSWP to complete a full cycle of RMS Phase Deviation measurement 8 Note PM RMS Dev...

Page 103: ...d 3 MHz so Max Hold produces a rectangular CW level spectrum envelope Peak FM deviation envelope width at the 3 dB points RBW 3 dB BW 2 Uncertainty of the Measurement SPA frequency markers are used to measure width of the occupied spectrum There are 1001 frequency points per span which gives marker frequency measurement a quantization related uncertainty that is uniformly distributed across Span 1...

Page 104: ...result If the result is 101 19 MHz record Fail for this measurement 8 Set SPA trace 1 mode Clear Write 9 If current RF frequency is 20 GHz set DUT and SPA to next frequency from the list in Step 1 then go to Step 2 10 If no Fails have been reported for any of the RF test frequencies indicate Pass for the overall test 11 Exit Int Wide FM Max Deviation Preliminary Test limit 100 MHz sales spec 0 135...

Page 105: ...onfig drag FM Time Domain Icon to center of the screen Demod BW 12 5 kHz Measurement Time 1sec Demod Config Demod AF Coupling A Scale Config Dev per Division 1 kHz Trigger button Set FM Offline as the trigger source Sweep Continuous External Function Generator 1 kHz 2 0Vpp Channel ON MG362x1A FM OFF Ext Low Noise FM DC Coupled FM Sensitivity 1 28 kHz V FM ON Test Procedure 1 Wait approximately 1 s...

Page 106: ...sult Summary window 2 In MG362x1A s FM controls change from DC Coupled to 1 kHz HPF 3 Wait 500 msec for FSWP to complete a measurement cycle Note FM deviation indicated in the FSWP Result Summary window 4 Calculate HPF rolloff dB 20 log FM dev from Step 1 FM dev from Step 3 Record this result for the 1 kHz HPF Result should be close to 3 dB 5 Set external function generator frequency to 62 Hz 6 In...

Page 107: ...Hz demod_flat_unc_dB 20 LOG 1 SQRT demod unc 2 demod unc at 1 kHz 2 100 Func Gen flatness spec relative to 1 kHz rate 0 1 dB to 100 kHz 0 15 dB to 5 MHz 0 3 dB to 20 MHz Total uncertainty dB sqrt demod_flat_unc_dB 2 func gen flatness dB 2 DUT margin 1 0 086 dB margin for DUT variation 1 dB test limit 1 dB Total uncertainty dB DUT margin dB Record the value in Table 4 6 1 dB test limit 1 1 dB test ...

Page 108: ... Limits table shown above in section D2 2 Set external function generator frequency 1st mod rate 1 kHz from the Measurement Uncertainties and Test Limits table Set FM ON Wait 10 msec 3 Set function generator freq mod rate 4 Wait 300 msec for FSWP to complete the PM measurement 2 00E 05 1 00E 01 0 02 0 003 0 15 0 15 0 76 0 76 3 00E 05 6 67E 00 0 02 0 003 0 15 0 15 0 76 0 76 5 00E 05 4 00E 00 0 03 0...

Page 109: ...ss for the Ext LNFM Flatness test 19 If no 3 dB BW Fails have occurred for any of the tested combinations of RF frequency and mod rate 1 MHz report Pass for the Ext LNFM 3 dB BW test 20 Exit Int Low Noise FM Flatness and 3 dB BW Test method and Test limit derivation are essentially identical to those for the Ext Low Noise FM Flatness and 3 dB BW test But the Internal FM test does not use an extern...

Page 110: ...it 10 msec 3 Set function generator freq mod rate 1 00E 05 2 00E 01 0 02 0 003 0 0 00 0 91 0 91 1 00E 05 1 50E 05 1 33E 01 0 02 0 003 0 0 00 0 91 0 91 1 50E 05 2 00E 05 1 00E 01 0 02 0 003 0 0 00 0 91 0 91 2 00E 05 3 00E 05 6 67E 00 0 02 0 003 0 0 00 0 91 0 91 3 00E 05 5 00E 05 4 00E 00 0 03 0 003 0 0 00 0 91 0 91 5 00E 05 7 00E 05 2 86E 00 0 03 0 003 0 0 00 0 91 0 91 7 00E 05 1 00E 06 2 00E 00 0 ...

Page 111: ... GHz and mod rate 10 MHz 17 If no Flatness Fails have occurred for any of the tested combinations of RF frequency and mod rate 1 MHz report Pass for the Int LNFM Flatness test 18 If no 3 dB BW Fails have occurred for any of the tested combinations of RF frequency and mod rate 1 MHz report Pass for the Int LNFM 3 dB BW test 19 Exit Ext Wide unlocked FM 3 dB BW FM flatness is measured relative to 10...

Page 112: ...eas for Int FM it does not Also for Ext FM accuracy of mod input sensitivity is of interest and has its own spec FM Deviation accuracy is measured with sinusoidal FM 1 kHz mod rate 2 MHz peak deviation 5 GHz carrier Ext Low Noise FM Accuracy FSWP analog demod is used to measure RMS phase deviation and from that FM peak deviation is calculated 2 MHz deviation at 1 kHz rate gives an FM mod index of ...

Page 113: ...62x1A Low Noise FM mode Ext FM DC Coupled Sensitivity 2 MHz V FM ON Test Procedure 1 Wait 2sec for FSWP to complete the RMS Phase Deviation measurement Note RMS Phase Deviation radians shown in the FSWP Summary window Also note the DVM RMS AC voltage readout 2 Calculate FM Deviation sqrt 2 RMS phase deviation rad mod rate Hz Note FM Deviation indicated by the DUT Calculate Error 100 Calculated Dev...

Page 114: ...mode Int FM DC Coupled FM Deviation 2 MHz FM Rate 1 kHz FM ON Test Procedure 1 Wait 2sec for FSWP to complete the RMS Phase Deviation measurement Note RMS Phase Deviation radians shown in the FSWP Summary window 2 Calculate FM Deviation sqrt 2 RMS phase deviation rad mod rate Hz Record this FM deviation value for the Int LNFM Accuracy test 3 Calculate Error 100 Calculated FM Deviation 2 MHz 2 MHz ...

Page 115: ...plitude 2 00Vpp Channel ON MG362x1A Wide unlocked FM mode Ext FM DC Coupled Sensitivity 100 MHz V FM ON Test Procedure 1 Set DUT and FSWP RF frequency per the following list starting at the lowest freq 5 GHz 10 GHz At each RF frequency measure FM deviation 2 Wait 40 seconds for DUT frequency to settle 3 Set SPA marker to peak Set SPA Marker freq to center 4 Set SPA Trace 1 mode Max Hold 5 Wait a 2...

Page 116: ... in Then set Trace 1 mode View 6 Set up the BW measurement function Marker Funct N dB down value set 3 dB 7 Refer to the Marker Table at the bottom of the screen Note the Function Result value for N dB down BW Calculate FM Deviation Noted value 3 MHz 2 8 Note FM Deviation indicated by the DUT 9 Calculate Error 100 Calculated Deviation Deviation indicted by DUT 1 10 Record Error for the current RF ...

Page 117: ...e distortion measurement FSWP THD spec is 0 1 To support a sales spec of 1 THD the test limit should be 1 0 1 0 9 Use a test limit of 0 80 Test Setup Connect equipment as shown in Figure 4 11 on page 4 30 FSWP Analog Demod mode Demod BW 1 6 MHz Meas Time 350 msec Meas Config open FM Time Domain FM Spectrum and Result Summary windows Soft key for FM Time Domain window Set Scale Config 100 kHz div M...

Page 118: ... the display Trace Trace 1 Clear Write Phase Noise Smoothing Off Spur Removal On 6 dB Trace Trace 2 Blank AM Noise Smoothing Off Spur Removal OFF Trigger Free Run External Function Generator 1 kHz 2Vpp Channel ON MG362x1A Low Noise FM mode Ext FM DC Coupled Sensitivity 50 kHz V FM ON Test Procedure 1 Wait 500 msec for FSWP to complete a measurement Record FM AM indication from the Integrated Measu...

Page 119: ...Test Procedure 1 Wait 500 msec for FSWP to complete the measurement 2 Read Carrier Offset shown in the FSWP Summary window 3 Save result as Ext FM Carrier Offset Untrimmed 2 MHz V 4 Set Everest Ext FM Sensitivity 2 kHz V 5 Set FSWP Demod BW 100 kHz 6 Wait 500 msec for FSWP to complete the measurement 7 Read Carrier Offset shown in the FSWP Summary window 8 Save result as Ext FM Carrier Offset Untr...

Page 120: ...Tests The Phase Mod maximum deviation tests are as follows Ext Low Noise ΦM Max Phase Deviation This procedure verifies that the DUT can produce phase deviation lesser of 5 radians or 7 MHz mod rate at mod rates up to 7 MHz at Nmod 1 The test is done at 2 6 GHz 5 GHz 10 GHz and 20 GHz to account for variations in YIG oscillator FM tuning behavior vs carrier frequency At carrier frequencies 2 56 GH...

Page 121: ...e 100 msec Scale Config 2 rad div Demod Config Demod AF Coupling AC Demod Config Demod Unit Phase Unit rad Trace Config Trace 1 Clear Write Linear Smoothing 1 Trigger button Set PM Offline as the trigger source External Function Generator 10 kHz 2 0Vpp 50 Ω Channel ON MG362x1A ΦM OFF Low Noise ΦM mode Ext ΦM DC Coupled Sensitivity 6 28 rad V Test Procedure 1 Set DUT and FSWP RF frequency per the f...

Page 122: ... 7 Go to step Step 12 8 Wait approx 1sec for FSWP to complete a full cycle of RMS Phase Deviation measurement 9 Note RMS Phase Deviation shown in the FSWP Summary window 10 Calculate Peak Deviation 1 414 RMS deviation Record this value for the current mod rate 11 If calculated Peak Deviation is Test Limit value in the table for the current mod rate record Fail for the current mod rate 12 If curren...

Page 123: ...owest freq 2 6 GHz 5 GHz 10 GHz 20 GHz At each RF frequency test max phase deviation for each of the mod rates and conditions in the Max Phase Deviation Table 4 10 2 Set Int LNPM mod rate mod rate from Table 4 10 3 Set MG362x1A Int Phase Deviation to the table value for the current mod rate 4 Wait 25 msec for PLL Set ΦM ON Wait 10 msec for PLL 5 Check PLL lock status If unlocked 6 Report Lock Fail...

Page 124: ...er frequency At carrier frequencies 2 56 GHz or 20 GHz max phase deviation and max deviation spec scale by a factor of Nmod see Table 4 11 due to frequency multiplication or division Table 4 11 Ext Wide ΦM Max Phase Deviation HW Config Fout MHz Fout MHz Nmod PhaseDeviation Max Spec rad PhaseDeviation Control Limit rad HET 10 2 000 1 640 8 04E 02 DDC 0 009 20 0 0625 40 5 03E 01 DDC 20 31 25 0 125 8...

Page 125: ...z 2 0Vpp Channel ON MG362x1A ΦM OFF Wide ΦM mode Ext ΦM DC Coupled Sensitivity 640 rad V Test Procedure 1 Set DUT and FSWP RF frequency per the following list starting at the lowest freq 2 6 GHz 5 GHz 10 GHz 20 GHz At each RF frequency test max phase deviation for each of the mod rates and conditions in the Max Phase Deviation Table 4 11 2 Set external function generator Frequency mod rate from th...

Page 126: ...g PM Time Domain to screen center The Summary window will now show Phase Mod results Meas Config Demod BW 40 MHz Meas Time 100 msec Scale Config 200 rad div Demod Config Demod AF Coupling AC Demod Config Demod Unit Phase Unit rad Trace Config Trace 1 Clear Write Linear Smoothing 1 Trigger button Set PM Offline as the trigger source External Function Generator Channel OFF MG362x1A ΦM OFF Low Noise ...

Page 127: ...ssel function The calculation is in the table below Note If you are viewing this document online as part of a PDF portfolio Table 4 14 can be previewed and saved as a separate text file modulation_index_calculations txt or Excel file modulation_index_calculations xls Refer to Document Format on page 1 1 Table 4 14 Modulation Index Calculations 1 of 2 Vmodon dBm measurement of the CW with Modulatio...

Page 128: ...600 10 Vmodon Vmodoff 20 RESULT_8 2 RESULT_8 3 16 RESULT_8 5 384 RESULT_8 7 18432 RES ULT_8 9 1474560 RESULT_10 RESULT_9 1 RESULT_9 2 4 RESULT_9 4 64 RESULT_9 6 2304 RESULT_9 8 147456 RESULT_9 10 1474 5600 10 Vmodon Vmodoff 20 RESULT_9 2 RESULT_9 3 16 RESULT_9 5 384 RESULT_9 7 18432 RES ULT_9 9 1474560 RESULT_11 RESULT_10 1 RESULT_10 2 4 RESULT_10 4 64 RESULT_10 6 2304 RESULT_10 8 147456 RESULT_10...

Page 129: ...window and activate the RF Spectrum display Span 5 kHz RBW 100 Hz VBW 10 Hz Trigger Continuous External Function Generator 1 kHz 2 0Vpp Channel ON MG362x1A Phase mod OFF Ext Low Noise Phase mod mode DC Coupled Ext Phase Mod Sensitivity 1 mrad V Set Ext Low Noise Phase Mod ON Test Procedure 1 Set SPA marker 1 normal Set marker 1 freq 5 GHz Table 4 15 Ext Low Noise ΦM Min Deviation HW Config Fout MH...

Page 130: ...enerator Channel OFF MG362x1A Phase Mod OFF Int Low Noise Phase mod mode DC Coupled Phase Deviation 1 mrad Mod Rate 1 kHz Set Int Phase Mod ON Test Procedure 1 Set SPA marker 1 normal Set marker 1 freq 5 GHz 2 Set SPA marker 2 delta marker Set delta frequency 1 kHz 3 Note the marker 2 delta level readout dB 4 Calculate Peak phase deviation rad mod index 2 10 delta dB 20 5 Record Peak phase deviati...

Page 131: ...d Flatness Test Mod Rate Hz Demod BW Hz Demod HPF Hz FSWP phase dev unc FSWP unc dB vs 1kHz funcgen flat dB vs 1kHz total unc dB 1dB test limit dB 1dB test limit dB 3dB test limit dB 3dB test limit dB 1 00E 03 1 25E 04 50 0 12 0 0 0 n a n a 3 00E 03 1 25E 04 50 0 12 0 011 0 10 0 10 0 81 0 81 1 00E 04 5 00E 04 50 0 12 0 011 0 10 0 10 0 81 0 81 3 00E 04 2 00E 05 50 0 12 0 011 0 10 0 10 0 81 0 81 5 0...

Page 132: ...ency mod rate from the table 3 Wait 25 msec for PLL Set ΦM ON Wait 10 msec for PLL 4 Check PLL lock status If unlocked 5 Report Lock Fail for the current mod rate Set ΦM OFF 6 Go to Step 19 7 Set FSWP Demod BW and AF HPF per the table for the current mod rate If Demod BW or AF HPF change wait for that to finish 8 Wait 300 msec for FSWP to complete the PM measurement 9 Note RMS Phase Deviation show...

Page 133: ...ΦM flatness dB 20 log Phase deviation Phase deviation at 1 kHz rate Measurement uncertainties and test limits The following formulas are used to generate the test limits table FSWP phase demod uncertainty i e demod unc 0 02 1 Phase Dev rad Phase Dev rad FSWP demod flatness uncertainty dB relative to 1 kHz demod_flat_unc_dB 20 LOG 1 SQRT demod unc 2 demod unc at 1 kHz 2 100 DUT margin 1 0 086 dB ma...

Page 134: ...iation for each of the mod rates and conditions in the Measurement Uncertainties and Test Limits Table Table 4 17 starting with 1 kHz mod rate 2 Set Int Phase Mod Mod Rate mod rate from the table 3 Wait 25 msec for PLL Set ΦM ON Wait 10 msec for PLL 4 Check PLL lock status If unlocked 5 Report Lock Fail for the current mod rate Set ΦM OFF 6 Go to Step 19 2 00E 05 8 00E 05 50 0 12 0 011 0 90 0 90 3...

Page 135: ...the current mod rate 15 If mod rate is 1 MHz 16 If Flatness 1 dB Test Limit or Flatness 1 dB Test Limit then report Flatness Fail and PLL lock status for the current mod rate 17 If mod rate is 1 MHz 18 If Flatness 3 dB Test Limit or Flatness 3 dB Test Limit then report 3 dB BW Fail and PLL lock status for the current mod rate 19 If mod rate 10 MHz find the next mod rate from Table 4 17 and go to S...

Page 136: ...y dB sqrt demod_flat_unc_dB 2 func gen flatness dB 2 Record that value in Table 4 18 DUT margin 1 0 086 dB margin for DUT variation 3 dB test limit 3 dB Total uncertainty dB DUT margin dB 3 dB test limit 1 3 dB test limit Measured phase deviations that differ considerably from the 10 rad target deviation will cause FSWP demod uncertainty to vary somewhat from the table value but the effect on test...

Page 137: ... 18 3 Wait 25 msec for PLL Set ΦM ON Wait 60 msec for PLL 4 Check PLL lock status If unlocked 5 Report Lock Fail for the current mod rate Set ΦM OFF 6 Go to Step 16 7 Set FSWP Demod BW and AF HPF per Table 4 18 for the current mod rate If Demod BW or AF HPF change wait for that to finish 8 Wait 300 msec for FSWP to complete the PM measurement 9 Note RMS Phase Deviation shown in the FSWP Summary wi...

Page 138: ... will cause FSWP demod uncertainty to vary somewhat from the table value but the effect on test limits is negligible Test Setup Connect equipment as shown in Figure 4 11 on page 4 30 FSWP Tab Analog Demod If PM Time Domain window does not appear then Meas Config Display Config drag PM Time Domain to screen center This will replace FM measurement with Phase Mod measurement The Summary Display will ...

Page 139: ...t for that to finish 8 Wait 300 msec for FSWP to complete the PM measurement 9 Note RMS Phase Deviation shown in the FSWP Summary window Units should be radians 10 Calculate pk dev sqrt 2 RMS phase deviation radians 11 Calculate Norm Phase dev pk dev pk dev at 100 Hz mod rate At 100 Hz mod rate this gives Norm Phase dev 1 Other mod rates may produce a different result 12 Calculate Flatness 20 log ...

Page 140: ...s insensitive to variations of YIG tuning sensitivity vs carrier frequency So it is sufficient to test accuracy only at 5 GHz Test Setup Connect equipment as shown in Figure 4 11 on page 4 30 Include the DVM FSWP Tab Analog Demod If PM Time Domain window does not appear then Meas Config Display Config drag PM Time Domain to screen center The Summary Display will now show Phase Mod results Meas Con...

Page 141: ... ON Test Procedure 1 Wait 2sec for FSWP to complete the RMS Phase Deviation measurement Note RMS Phase Deviation radians shown in the FSWP Summary window 2 Calculate Peak Phase Deviation sqrt 2 RMS phase deviation rad 3 Calculate Int LNPM Error 100 Calculated peak phase deviation 5 rad 1 Record the result If the result is 4 5 and 4 5 Record Pass otherwise record Fail Ext Wide ΦM Phase Deviation Ac...

Page 142: ...WPM Sensitivity Calculated Peak Phase deviation sqrt 2 DVM RMS voltage readout Calculate Ext WPM Sensitivity Error 100 Calculated Ext WPM sensitivity 5 rad V 1 Record the result If the result is 4 and 4 Record Pass otherwise record Fail Int Wide ΦM Phase Deviation Accuracy Do this test if the optional internal modulation source is installed Similar to the Ext WPM Accuracy test Uncertainty of the F...

Page 143: ... the waveform For External modulation FM Out amplitude is is proportional to Ext FM PM input amplitude and is calibrated to produce 2Vpp into 50 Ω when Ext FM PM amplitude is 2Vpp Amplitude accuracy of FM Out is not specified but it should be checked for correct operation Presently RF must also be ON to enable this output Test Setup Connect equipment as shown in Figure 4 11 on page 4 30 A DVM is n...

Page 144: ... V FM ON RF ON Test Procedure Note the scope Vpp reading for each of the following conditions 1 Calculate flatness Ext Input to FM Out Normalize all 7 Vpp scope readings to the Vpp reading at 1 kHz mod rate i e normalized value measured value value measured at 1 kHz Normalized value at 1 kHz should be 1 Convert the normalized value for each frequency to dB i e dB 20 log normalized value Result for...

Page 145: ... on page 3 7 Setup Equipment as shown in Figure 4 12 Note Before performing this procedure ensure that all test equipment is calibrated Refer to the manufacturer s test equipment manual Note For recording test data for this section refer to Appendix A Test Records Table 4 21 Equipment Required Model Number Manufacturer Description 33220A or equivalent KEYSIGHT WAVEFORM GENERATOR MS2090A 0754 or eq...

Page 146: ...imeter thru a BNC Tee 3 Set waveform generator to 1 0V peak 2 0V pk pk and 1 kHz sinewave Record AC voltage reading 4 Calculate AM Meter Output 10000 AC voltage reading 2 AM_METER AM_OFFSET 5 Read AM Meter Output on GUI Record value in Table 4 22 6 Repeat steps 3 to 5 at 0 0 5 1 0 1 5V pk pk 7 Compare calculated and read AM Meter Output Pass if all difference are 1 Table 4 22 AM Meter Applied pk p...

Page 147: ...t Waveform to 1 kHz sine wave 3 Set AM_REF_DAC to AM_INT 4 Set AM_CAL_DAC to AM_CAL_LIN_25M 5 Set AM_SEN_DAC to AM_SEN_LIN_25M 6 Measure first sideband suppression by taking averages of upper and lower sidebands in dBc 7 Compute Mod Depth using 2 10 sideband suppression 20 Record value in Table 4 23 8 Repeat measurement with Freq 9 Repeat at 1G 4G 10G 20G 40 GHz with corresponding Power Level and ...

Page 148: ... to AM_INT 3 Set AM_CAL_DAC to AM_CAL_LIN_25M 4 Connect waveform generator to the Synth AM Input and Multimeter thru a BNC TEE 5 Set waveform generator output to DC signal 6 Set waveform generator to 0 5 Vdc and read DC voltage reading on the Multimeter as Vpos 7 Set waveform generator to 0 5 Vdc and read DC voltage reading on the Multimeter as Vneg 8 Set Center Freq to DUT freq and Span to 0 Hz o...

Page 149: ...put to DC signal 6 Set waveform generator to 0 5 Vdc and read DC voltage reading on the Multimeter as Vpos 7 Set waveform generator to 0 5 Vdc and read DC voltage reading on the Multimeter as Vneg 8 Set Center Freq to DUT freq and Span to 0 Hz on Spectrum Analyzer 9 Set AM_SEN_DAC to AM_SEN_LOG_25M 10 Toggle waveform generator amp between 0 5Vdc and 0 5Vdc 11 Measure power delta P between both wav...

Page 150: ...ction Generator s SYNC to the 6 dB attenuator at the oscilloscope s Trigger input 4 For models with internal pulse use a BNC to SMA adapter to connect a 50 BNC cable from the MG362x1A s PULSE SYNC OUT to the 6 dB attenuator at the oscilloscope s Trigger input Note Before performing this procedure ensure that all test equipment is calibrated Refer to the manufacturer s test equipment manual 1 Conne...

Page 151: ...ey to select the square wave function c Press the Freq key then the green Enter Number key and enter 250 kHz d Press the blue Shift key then the Duty Cycle key and use the rotary knob to adjust the duty cycle to 25 e Press the Ampl key then the green Enter Number key and enter 2 2 Vp p f Press the Offset key then the green Enter Number key and enter 1 1 VDC Pulse Rise Time Fall Time and Overshoot ...

Page 152: ...4 s Select Close to close the window c Press the Clear Display key Allow the oscilloscope to sample the signal and wait for a clearly defined waveform to appear on the display d Select the Scale button at the lower left corner of the display e Set the scale and offset voltages so that the positive peak of the pulse is centered and the amplitude is optimally displayed Select Close to close the wind...

Page 153: ...set up the Function Generator as follows a Turn the Function Generator off then back on to reset the instrument b Press the key to select the square wave function c Press the Freq key then the green Enter Number key and enter 250 kHz d Press the blue Shift key then the Duty Cycle key and use the rotary knob to adjust the duty cycle to 25 e Press the Ampl key then the green Enter Number key and ent...

Page 154: ...e result as Vref in the test record 6 On the MG362x1A press On Off to turn pulse modulation on 7 Set up the oscilloscope as follows a Press the Source button near the trigger until Left Module is illuminated b Press the Clear display key Allow the oscilloscope to sample the signal and wait for a clearly defined waveform to appear on the display c Select Time Delay and scale so that only the positi...

Page 155: ...er reset the CW menu is displayed b Press FREQUENCY to open the current frequency parameter for editing c Set F1 to the first next applicable frequency in the test record for the model being tested d Press Level to open the current power level parameter for editing and set L1 to the maximum specified leveled output power level e Press Modulation then Pulse to select the External Pulse Status menu ...

Page 156: ...yzer read the marker delta value and record the value as Pdepth in the test record 5 Repeat steps 1a to 4 for each frequency listed in the test record Note The signal level may drift slowly after the pulse mode is turned on Make the measurement as soon as possible after turning the pulse mode on This drift is the result of the Sample Hold circuit not holding the level because of a very low pulse d...

Page 157: ... Head input 3 For models without internal pulse use a BNC to SMA adapter to connect a 50 BNC cable from the Function Generator s SYNC to the 6 dB attenuator at the oscilloscope s Trigger input 4 For models with internal pulse use a BNC to SMA adapter to connect a 50 BNC cable from the MG362x1A s PULSE SYNC OUT to the 6 dB attenuator at the oscilloscope s Trigger input Index Description 1 Connect t...

Page 158: ...tion Generator off then back on to reset the instrument b Press the key to select the square wave function c Press the Freq key then the green Enter Number key and enter 250 kHz d Press the blue Shift key then the Duty Cycle key and use the rotary knob to adjust the duty cycle to 25 e Press the Ampl key then the green Enter Number key and enter 2 2 Vp p f Press the Offset key then the green Enter ...

Page 159: ...bottom of the display b Set the scale to 10 ns div and the delay to 4 μs Select Close to close the window c Press the Clear Display key Allow the oscilloscope to sample the signal and wait for a clearly defined waveform to appear on the display d Select the 1 button at the lower left corner of the display e Adjust the scale and offset voltages so that the positive peak of the pulse is centered and...

Page 160: ... 6 in Test Setup on page 4 91 2 For models without internal pulse set up the Function Generator as follows a Turn the Function Generator off then back on to reset the instrument b Press the key to select the square wave function c Press the Freq key then the green Enter Number key and enter 250 kHz d Press the blue Shift key then the Duty Cycle key and use the rotary knob to adjust the duty cycle ...

Page 161: ...he trigger until Front Panel is illuminated b Press the Clear display key Allow the oscilloscope to sample the signal and wait for a clearly defined waveform to appear on the display c Select Time Delay and Scale and adjust them so that only the positive peak portion of the pulse fills the display For example set the scale to 90 ns div and the delay time to 4 075 s for a 1 s pulse or set the scale...

Page 162: ...for editing c Set F1 to the first next applicable frequency in the test record for the model being tested d Press Level to open the current power level parameter for editing and set L1 to the maximum specified leveled output power level e Press Modulation then Pulse to select the External Pulse Status menu f Press Low RF On and ensure that the pulse mode is turned off 2 Connect the MG362x1A RF Out...

Page 163: ...ess Scale Div and then enter 15 dB k Press the Peak Search key l Press the Marker key then select DELTA to set the marker reference 4 On the MG362x1A s External Pulse Status menu select On Off to turn the pulse mode on Note that in many cases the tone will go to the noise floor 5 On the spectrum analyzer read the marker delta value and record the value as Pdepth in the test record 6 Repeat steps 1...

Page 164: ...4 26 Pulse Modulation Tests with the 86100C Oscilloscope Performance Verification 4 98 PN 10370 10386 Rev B MG362x1A MM ...

Page 165: ...s self test error messages are displayed on the front panel data display These error messages describe the malfunction and in most cases provide an indication of what has failed For the Error and Signal Generator messages see Appendix B Note Troubleshooting procedures presented in this chapter may require the removal of the instrument s covers to gain access to the test points on the printed circu...

Page 166: ...5 3 MG362x1A Block Diagram Troubleshooting 5 2 PN 10370 10386 Rev B MG362x1A MM 5 3 MG362x1A Block Diagram Figure 5 1 shows the basic MG362x1A block diagram Figure 5 1 Block Diagram ...

Page 167: ...AT0 VSS CMD CLK VDD COM SHLD2 J1 14 12 4 5 2 6 3 7 16 15 13 1 9 8 10 11 3 500 207 DATA_SHEET 3V3 C1 DATA_SHEET 1u DATA_SHEET 10u C2 USD_D3 USD_D3 USD_D2 USD_D2 USD_D1 USD_D1 USD_D0 USD_D0 USD_CLK USD_CLK USD_CMD USD_CMD SDCARD_DET SDCARD_WP SDCARD_WP SDCARD_DET BOARD_ID_CPLRDET A A A A A A DATA_SHEET E50 ATT_ID ATT_ID MTG P18 26 25 6 1 24 18 8 17 20 9 21 15 23 22 19 16 14 13 12 11 10 7 5 4 3 2 3 5...

Page 168: ..._DAC_10M_CRS_100M_FINE_CS REF_DAC_10M_CRS_100M_FINE_CS REF_SER_REG_CS REF_SER_REG_CS REF_DAC_10M_FINE_CS REF_DAC_10M_FINE_CS FEM_SPARE1 FEM_SPARE1 REF_PLL_10M_CS REF_PLL_10M_CS RP_GPS_CS RP_GPS_CS RP_SER_REG_CS RP_SER_REG_CS REF_CLK0_P REF_CLK0_P REF_CLK0_N REF_CLK0_N REF_10MHZ_DET REF_10MHZ_DET REF_100MHZ_PLL_LOCK REF_100MHZ_PLL_LOCK ASWP_MISO_P ASWP_MISO_N ASWP_SCLK_P ASWP_SCLK_P ASWP_SCLK_N ASW...

Page 169: ...NK_RELAY BLNK_RELAY RETBLNK RETBLNK BANDSWBLNK BANDSWBLNK SEQSYNCP SEQSYNCP SEQSYNCN SEQSYNCN SEQSYNC SEQSYNC DATA_SHEET E53 SYNTH_SPARE ATOM_RX_MISO ATOM_TX_MOSI INDICATES DIFFERENTIAL LINES 100 OHMS ATOM_RX_MISO ATOM_TX_MOSI DATA_SHEET E54 DATA_SHEET E55 DATA_SHEET E56 MALE P12 160 162 161 159 150 149 148 147 146 145 144 143 142 141 132 130 140 138 136 134 128 126 124 122 139 137 135 133 131 129...

Page 170: ...LK_N DCM_SCLK_N DCM_SER_REG_CS DCM_SER_REG_CS DCM_S0 DCM_S0 DCM_DSA1_LE DCM_DSA1_LE DCM_DSA2_LE DCM_DSA2_LE DCM_DIV_SYNC DCM_DIV_SYNC DCM_SPARE1 DCM_SPARE1 ALC ALC ALC_RTN ALC_RTN 30V 3V9 16V DCM_MISO_P DCM_MISO_P DCM_MISO_N DCM_MISO_N 6V DATA_SHEET E60 DATA_SHEET E61 DATA_SHEET E64 DATA_SHEET E65 DATA_SHEET E66 DATA_SHEET E67 DATA_SHEET E68 DATA_SHEET E69 DATA_SHEET E70 DATA_SHEET E71 DATA_SHEET ...

Page 171: ...4V_LDO 15V_LDO 15V_LDO 6V 25V 16V 16V 30V 40V 30V 6V_STBY 13V 13V_STBY BOARD_ID_FP BOARD_ID_FP 3V9 POWER TRACES Use wide traces or copper pour POWER TRACES Use wide traces or copper pour INDICATES DIFFERENTIAL LINES 100 OHMS INDICATES DIFFERENTIAL LINES 90 OHMS 1600mA G3 G4 G1 G2 8 3 7 2 18 9 10 16 5 6 11 4 1 12 15 19 17 DATA_SHEET 3 500 368 26 22 27 J4 20 13 28 23 24 14 31 30 25 29 33 34 21 32 A ...

Page 172: ...0 SWF_DPB_CS CS_1 SWF_DPB_CS CS_1 SWF_DPC_CS CS_2 SWF_DPC_CS CS_2 SWF_DPD_CS CS_3 SWF_DPD_CS CS_3 SWF_DSA_LE SWF_DSA_LE SWF_SCR_CS SWF_SCR_CS SWF_TEMP_CS SWF_TEMP_CS SWF_ADC_CS SWF_ADC_CS SWF_PWR_UP SWF_PWR_UP ALC ALC ALC_RTN ALC_RTN INDICATES DIFFERENTIAL LINES 100 OHMS DATA_SHEET E131 DATA_SHEET E132 DATA_SHEET E133 DATA_SHEET E134 DATA_SHEET E135 DATA_SHEET E136 DATA_SHEET E137 DATA_SHEET E138 ...

Page 173: ...SYNTH_REG_CS_N M0_FPGA_INIT M0_FPGA_DIN 6V 3V9 3V3 M0_FPGA_PROG M0_FPGA_PROG M0_RST M0_RST 10V 30V 15V_LDO M0_FPGA_CCLK M0_FPGA_CCLK M0_FPGA_DONE M0_FPGA_DONE INDICATES DIFFERENTIAL LINES 100 OHMS REF_SCLK_P REF_SCLK_P REF_SCLK_N REF_SCLK_N REF_MOSI_P REF_MOSI_P REF_MOSI_N REF_MOSI_N REF_PLL_10M_CS REF_PLL_10M_CS REF_SER_REG_CS REF_SER_REG_CS REF_SPARE_15 REF_SPARE_15 REF_DAC_10M_CRS_100M_FINE_CS ...

Page 174: ... HORIZ_IN HORIZ_IN DWL_INT DWL_INT DWL_OUT DWL_OUT DWL_IN DWL_IN M1_FPGA_CCLK M1_FPGA_CCLK M1_FPGA_DONE M1_FPGA_DONE M1_FPGA_INIT M1_FPGA_INIT M1_FPGA_DIN M1_FPGA_DIN M1_FPGA_PROG M1_FPGA_PROG M1_RESET M1_RESET AM_OUT AM_OUT FM_OUT FM_OUT WIDE_FM WIDE_FM PULSE_SYNC_OUT PULSE_SYNC_OUT 16V 3V3 3V9 INDICATES DIFFERENTIAL LINES 100 OHMS PULSE_OUT PULSE_OUT FM_SWP FM_SWP SLOPE SLOPE FM_SWP_RTN FM_SWP_R...

Page 175: ...O1_DP USBO1_DN RP_GPS_CS RP_GPS_CS RP_MOSI_N RP_MOSI_N RP_MOSI_P RP_MOSI_P USBO1_ID USBO1_CPEN USB_3A_EN USBO1_FAULT INDICATES DIFFERENTIAL LINES 90 OHMS INDICATES DIFFERENTIAL LINES 100 OHMS PULSE_OUT PULSE_OUT USB_3A_EN USBO1_CPEN USBO1_ID ETH_LED1 ETH_LED2 ETH_LED2 ETH_LED0 ETH_LED0 USBO1_FAULT DATA_SHEET E232 DATA_SHEET E233 DATA_SHEET E234 DATA_SHEET E235 DATA_SHEET E237 DATA_SHEET E239 DATA_...

Page 176: ...YIG Driver B6 8 Rear Panel Aux I O 9 Switched Filter B12 10 Option 2 moves the coupler back to rear position and the step attenuator moves to the forward position 11 Coupler Position without Option 2 12 Frequency Extension Module MG36241A 13 Synthesizer Module B11 14 Digital Down Converter B10 15 Reference Synthesizer Module B14 Standard Figure 5 11 MG362x1A Modules and Components B14 B1 B2 B5 B6 ...

Page 177: ...s needed 5 Inspect the ac line supply switch block and the wiring to the main power supply and standby power supply for defects If a defect is found replace as necessary If no defect is found go to step 6 6 Replace the standby and main power supplies If the instrument powers up the problem is cleared If the instrument fails to power up contact your local Anritsu Service Center for assistance Probl...

Page 178: ... step and stop if Ethernet connection becomes operational 1 Inspect the RJ45 connector on the rear panel for damage or bent pins 2 Replace Ethernet cable from the instrument to the network connection 3 Try another facility s Ethernet connection 4 Refer to the MG362x1A Operation Manual 10370 10383 and follow the instructions to restore the Ethernet GPIB Controller to factory default settings 5 Repl...

Page 179: ...on hardware Option 27 Procedure 1 Perform a manual pre calibration Refer to Initial Calibration on page 3 11 2 Run self test If no error message is displayed the problem is cleared If any errors are displayed go to step 3 3 Replace the B3 PCB perform a manual pre calibration and run self test If no error message is displayed the problem is cleared 4 Perform modulation calibrations and verify perfo...

Page 180: ... run self test If no error message is displayed the problem is cleared 4 Perform Level Cal calibrations and verify performance REG Errors Regulator Errors Procedure 1 Perform a manual pre calibration Refer to Initial Calibration on page 3 11 2 Run self test If no error message is displayed the problem is cleared If any errors are displayed go to step 3 3 Replace the B1 module and perform a manual ...

Page 181: ... If not present replace the SMA cable The MG362x1A Displays Lock Error Lock error can be the result of a number of failing conditions that are occurring with the frequency lock circuitry Procedure 1 Perform a manual pre calibration Refer to Initial Calibration on page 3 11 2 Run self test If no error message is displayed the problem is cleared If any errors are displayed go to step 3 3 Check the r...

Page 182: ...dition still exists contact your local Anritsu Service Center for assistance Output Power Level Related Problems in the DDC 9 kHz to 2 2 GHz The warning message UNLEVELED appears on the front panel display 1 Perform a manual pre calibration Refer to Initial Calibration on page 3 11 2 Run self test 3 If error condition still exists continue to the next step 4 Measure the frequency and power at the ...

Page 183: ...ss On Off to turn internal amplitude modulation on 5 Using an oscilloscope verify the presence of a 10 volt peak to peak sine wave signal with a period of 100 s at the rear panel AM OUT connector If present replace the B3 modulation module 6 Run self test again If error condition exists contact your local Anritsu Service Center for assistance Internal FM or Φ Modulation Circuitry Failed Indicates ...

Page 184: ... continue to the next step 3 Press MODULATION on the MG362x1A then PULSE to go to the Internal PULSE Status display 4 Press On Off to turn internal frequency modulation on 5 Using an oscilloscope verify the presence of a 10 volt peak to peak sine wave signal with a period of 10 ms at the rear panel OUT connector If present replace the B3 modulation module 6 Run self test again If error condition e...

Page 185: ...eable parts and assemblies in the MG362x1A signal generators Table 6 2 lists the replaceable parts and assemblies in the models MG362x1A All parts are exchange assemblies except fuses fans and front panel Model ID plates Warning Hazardous voltages are present inside the MG362x1A whenever AC line power is connected Turn off the instrument and remove the line cord before removing any covers or panel...

Page 186: ...L CONTROL ASSEMBLY B2 3 82696 3 ND86370 REGULATOR MODULE ASSY B1 3 82700 3 ND86367 SYNTHESIZER RF MODULE 2 B11 3 82904 3 ND86872 MG362X1A REF STD ASSY B14 3 84532 4 3 ND86361 YIG MODULE ASSY B6 3 86172 3 ND86873 ALC PROCESSING MODULE B5 3 82910 3 ND86358 DIGITAL DOWN CONVERTER B10 3 82915 3 ND86874 SWITCHED FILTER MOD HP B12 3 82890 3 ND86875 FEM 43GHz STD E B13 3 84984 3 ND86876 FEM 43GHz HI PWR ...

Page 187: ... M F 43 5 GHz RF ASSEMBLY 3 85271 3 85271 13V 38 5A 500W POWER SUPPLY POWER SUPPLY 3 40 208 3 40 208 INPUT MODULE 6A FLNGE MT AC MAINS 3 260 79 3 260 79 6 3A 250V 5X20MM SL O BLO FUSE AC MAINS 3 631 73 3 631 73 92MMX92MM FAN ASSY FAN 3 86123 3 86123 60MMX60MM FAN ASSY FAN 3 86124 3 86124 DC to 43 5 GHz K f K f RF ASSEMBLY 33KFKF50C 33KFKF50C Table 6 1 Replaceable Parts Assemblies Module PCB Part D...

Page 188: ... Initial Calibration Spurious Signals Verification Power Level Accuracy and Flatness Phase Noise Verification Single Sideband Phase Noise Test B5 ALC Switched Filter Shaper Calibration Power Level Accuracy and Flatness RF Level Calibration or Verification ALC Bandwidth Calibration AM Calibration and Verification Pulse Modulation Verification Pulse Modulation Tests with the Sampling Oscilloscope B4...

Page 189: ...ion Spurious Signals Verification Spurious Signals Tests Phase Noise Verification Single Sideband Phase Noise Test FEM Switched Filter Shaper Calibration Power Level Accuracy and Flatness RF Level Calibration or Verification Phase Noise Verification Single Sideband Phase Noise Test Spurious Signals Verification Spurious Signals Tests Front Panel Regulator Power Supply Spurious Signals Verification...

Page 190: ...l Refer to Figure 6 1 Install the semi rigid cables to the designated locations as shown Use a torque wrench to tighten to 8 in lbs 1 B6 to B11 J2 2 B12 J3 to B10 J1 3 B11 J3 to B12 J1 4 B12 J5 to B10 J2 5 B12 J2 to B14 RF In 6 From B14 J9 to B11 J1 Figure 6 1 Semi Rigid Cable Connections B14 B1 B2 B5 B6 B10 B11 B12 J1 J2 J4 J1 J3 J2 J5 DTE RF IN J1 J2 J3 1 2 3 5 4 6 ...

Page 191: ...z REF IN to B14 J10 3 10 MHz REF OUT to B14 J11 4 B14 J16 to Rear Panel J16 5 B5 J3 Rear Panel J5 6 B11 J4 to B6 J4 7 B5 J7 to B10 J5 8 B5 J6 to B12 J6 9 B5 J3 to Rear Panel J5 10 B5 J2 to B10 J4 11 B5 J1 Coupler DET 12 10 MHz REF OUT to B14 J11 13 B14 J13 to B10 J3 14 10 MHz REF IN to B14 J10 Figure 6 2 SMA Cable Connections 24 J1 J2 J3 J4 J5 J6 J7 J8 J9 J5 J3 J4 J4 J5 J6 B12 B11 B10 B5 B1 B2 B14...

Page 192: ...re 6 3 Install the SMA and semi rigid cables to the designated locations as shown Use a torque wrench to tighten semi rigid cables to 8 in lbs 1 FEM 2 B13 J6 to B5 J8 3 Semi Rigid B13J2 to Coupler RF In No Option 2 4 B13 J3 to B12 J2 5 B13 J1 to B12 J4 Figure 6 3 FEM Cable Connection J1 J2 J3 J2 J1 J2 J3 J4 J5 J6 J7 J8 J9 B5 B6 B13 J1 J6 J3 J2 J5 J2 DTE RF IN J4 J1 J3 B12 B10 B11 J1 5 4 3 2 1 ...

Page 193: ...86 Rev B 6 9 6 7 Option 13 Configuration Refer to Figure 6 4 Install the Option 13 items to the designated locations as shown 1 14 Pin Cable Assembly 2 B7 J2 B11 J1 SMA 3 B9 J9 B7 J1 SMA 4 Dielectric Resonator Oscillator DRO B7 Figure 6 4 Option 3 Configuration P19 J1 B11 B9 J9 B7 1 4 2 3 ...

Page 194: ...1 OCXO Module B8 Opt 56 uses 3 86327 Opt 03 uses 3 85025 2 B9 J8 REAR PANEL 1600MHz OUT SMA to SMA 3 B9 J7 REAR PANEL 1600MHz IN SMA to SMA 4 B9 J3 REAR PANEL 100 MHz IN BNC to MCXM 5 B8 J4 REAR PANEL 10 MHz IN BNC to MCXM 6 B9 J2 B10 J3 SMA 7 HIGH PERFORMANCE REFERENCE MODULE B9 8 B8 J1 B9 J12 SMA Figure 6 5 Option 3 or Option 56 Configuration B11 B10 J3 J1 J5 J1 J8 J7 J9 J1 J12 J2 J5 J4 B9 J1 B8...

Page 195: ...ure 6 6 Option 23 includes the addition of the phase noise amp module shown below 1 K f to K f ADAPTER REAR PANEL MOUNT 2 PNA J1 B12 J4 3 PHASE NOISE AMP MODULE Opt 23 4 PNA J2 REAR PANEL PNA OUT 5 PHASE NOISE AMP MODULE BIAS CABLE TO J6 6 PHASE NOISE AMP MODULE BIAS CABLE Figure 6 6 Option 23 Configuration Bias Cable Connection 3 4 2 5 1 6 ...

Page 196: ...ed 1 Phillips screwdriver Preliminary Disconnect the power cord from the instrument Procedure Refer to Figure 6 7 1 Remove the M5X20 screws for both handles Retain the screws to use when reinstalling the handles 2 Remove the 6 32X 31 screw for each handle Retain the screws to use when reinstalling the handles 3 Remove the handle If the upper insert or bottom foot should come off during the removal...

Page 197: ...from the instrument Procedure Refer to Figure 6 8 1 Remove two M5X15 Screws from the top and bottom rear feet Retain the screws to use when reinstalling the rear feet 2 Remove the M3X10 Screws Retain the screws to use when installing the rear feet 3 Remove the top and bottom rear feet 4 Installation is performed in reverse order 1 M5X15MM Screw 2 Top Rear Foot 3 Bottom Rear Foot 4 M3X10 Screw Figu...

Page 198: ...s Remove the Handles on page 6 12 Remove the Rear Feet on page 6 13 Procedure Refer to Figure 6 9 1 Remove the M3X5 screws x4 that retain each cover from the rear panel Retain the screws to use when reinstalling the covers 2 Pull each cover away from the lip of the front bezel to remove 3 Installation is performed in reverse order 1 Flange Under Lip of Bezel 2 Top Cover 3 Vented Side Cover 4 M3X5 ...

Page 199: ...on page 6 13 Remove the Covers on page 6 14 Procedure Refer to Figure 6 10 on page 6 16 1 Remove the M3x5 screws x16 1 Lift to remove the top sub panel 2 Installation is performed in reverse order Remove Front Panel Use this section when remove the front panel Refer to Figure 6 10 on page 6 16 Tools Required 1 Phillips screwdriver Preliminary Disconnect the power cord from the instrument Refer to ...

Page 200: ...nel away from the chassis to gain access to the front panel ribbon cable that connects the front panel PCB assembly to the microprocessor PCB assembly 3 Remove the screw that attaches the ground wire to the chassis frame 4 Remove the front panel from the chassis 5 Installation is performed in reverse order 1 M3x5 Screw x16 2 Top Sub cover 3 Front Panel to Motherboard Ribbon Cable 4 Ground Wire 5 G...

Page 201: ...ove the rear panel Tools Required 1 Phillips screwdriver Preliminary Disconnect the power cord from the instrument Refer to the following procedures Remove the Handles on page 6 12 Remove the Rear Feet on page 6 13 Remove the Covers on page 6 14 Remove the Top Sub panel on page 6 15 Figure 6 11 Remove Rear Panel 6 4 3 2 7 9 10 11 12 13 1 8 14 5 ...

Page 202: ...P16 and P17 from the main board 7 Remove the power supply kep nut and ground lug from the EMI plug 8 Remove the power supply blue and brown wire from the EMI lugs 9 Gently pull to remove the rear panel from the BNC panel and chassis frame 10 Installation is performed in reverse order 1 Chassis Frame 2 Power Supply Ground Lug and Kep Nut 3 EMI Brown Wire Connection Lug 4 EMI Blue Wire Connection Lu...

Page 203: ...ct the power cord from the instrument Refer to the following procedures Remove the Handles on page 6 12 Remove the Rear Feet on page 6 13 Remove the Covers on page 6 14 Remove the Top Sub panel on page 6 15 Remove the Rear Panel on page 6 17 Procedure Refer to Figure 6 12 on page 6 19 1 Lift the BNC PCBA from the Main Board connector 2 Installation is performed in reverse order 1 Main Board to BNC...

Page 204: ...ove the Rear Feet on page 6 13 Remove the Covers on page 6 14 Remove the Top Sub panel on page 6 15 Procedure Refer to Figure 6 13 on page 6 20 1 Remove the M3X6 screws x4 that attach the power supply plate to the side panel 2 Remove the 3MX5 screws x4 from the power supply plate and the power supply 3 Separate the power supply plate from the power supply 4 Installation is performed in reverse ord...

Page 205: ...cord from the instrument Refer to the following procedures Remove the Handles on page 6 12 Remove the Rear Feet on page 6 13 Remove the Covers on page 6 14 Remove the Top Sub panel on page 6 15 Procedure Refer to Figure 6 14 1 Remove the M3X6 screws x5 connecting the sub panel to the Chassis 2 Remove the sub panel 3 Installation is performed in reverse order 1 Chassis 2 M3X6 Screws x5 3 Sub panel ...

Page 206: ... following removal procedures Remove the Handles on page 6 12 Remove the Rear Feet on page 6 13 Remove the Covers on page 6 14 Remove the Top Sub panel on page 6 15 1 50 Pin Cable Assembly 2 M4x32mm Screws x4 3 Flat Washer 1 00x 188xx 05 1 4 Isolator Bushing 5 Sleeve Bushing 6 M3x6mm x7 7 Adapter Board Cable Reference Module Connection 8 Flat Washer 12 00x4 30x1 00 x4 9 Isolator Housing 10 M3x10mm...

Page 207: ...adapter board cable motherboard connection 3 Lift to remove adapter board cable from the motherboard connector 4 Disconnect and remove the semi rigid cable from J9 connector 5 Remove the M4x32mm screws that contain the isolator bushing sleeve bushing and two flat washers from each of the four isolator housings 6 Remove the reference module 7 Installation is performed in reverse order 8 Use a torqu...

Page 208: ...dule Option 29 ALC Module B5 Frequency Extension Module MG36241A Synthesizer Module B11 Digital Down Converter B10 High Performance Reference Module B9 Option 3 Reference Synthesizer Module B14 Standard Phase Noise Tools Required 1 Phillips screwdriver 5 16 open end wrench Used to remove attached semi rigid cable Anritsu 01 201 torque wrench applies a preset 8 in lb torque Preliminary Disconnect t...

Page 209: ... 6 6 and Section 6 5 SMA Cable Installation Standard Model on page 6 7 3 Remove the two screws that attach the module or component to the bottom tray 4 Lift the module or component to disconnect the Px connectors from the motherboard 5 Installation is performed in reverse order 6 Use a torque wrench to tighten the semi rigid connectors to 8 in lbs 1 Mounting Flange and Screw 2 Px Connectors Figure...

Page 210: ...6 12 Remove the Rear Feet on page 6 13 Remove the Covers on page 6 14 Remove the Top Sub panel on page 6 15 Procedure Refer to Figure 6 17 1 Remove all cables and connectors Refer to Section 6 4 Semi Rigid Cable Installation Standard Model on page 6 6 and Section 6 5 SMA Cable Installation Standard Model on page 6 7 2 Remove three 632x31mm pan head screws that attach the YIG module to the bottom t...

Page 211: ... following removal procedures Remove the Handles on page 6 12 Remove the Rear Feet on page 6 13 Remove the Covers on page 6 14 Remove the Top Sub panel on page 6 15 Procedure Refer to Figure 6 18 1 Remove all cables and connectors Refer to Section 6 4 Semi Rigid Cable Installation Standard Model on page 6 6 and Section 6 5 SMA Cable Installation Standard Model on page 6 7 2 Remove three M3x12mm sc...

Page 212: ...ue Anritsu 01 201 torque wrench applies a preset 8 in lb torque Preliminary Disconnect the power cord from the instrument Refer to following removal procedures Remove the Handles on page 6 12 Remove the Rear Feet on page 6 13 Remove the Covers on page 6 14 Remove the Top Sub panel on page 6 15 1 Dielectric Resonator Oscillator DRO 2 M4x32mm Screw x2 3 T Sleeve Bushing 4 Vibration Isolator x4 5 Vib...

Page 213: ...age 6 28 1 Remove the two M4x0 7 kep nuts 2 Remove the four M4x32mm screws 3 Retain all hardware for installation 4 Lift DRO and isolation bracket 5 Installation is performed in reverse order 6 Tighten the two M4x0 7mm Kep nuts to 6 in lbs 7 Tighten the four M4x32mm screws to 6 in lbs 8 Tighten the semi rigid connectors to 8 in lbs ...

Page 214: ...move the Covers on page 6 14 Remove the Top Sub panel on page 6 15 Remove the Rear Panel on page 6 17 Remove the Power Supply on page 6 20 Remove all remaining modules Procedure Refer to Figure 6 20 1 Lay four non conductive spacers on clean flat conductive surface such as a ESD mat This is to lie the main PCB on 2 Turn main PCB chassis assembly over and lie on the spacers 3 Remove the 4 40X 31 sc...

Page 215: ...t procedure The statement s of compliance with specification2 is based on a 95 coverage probability for the expanded uncertainty of the measurement results on which the decision of compliance is based Other values of coverage probability for the expanded uncertainty may be reported where practicable for some of the measured values it is not possible to make a statement of compliance with specifica...

Page 216: ...erator Serial Number Date Options Internal Time Base Aging Rate Test Optional All MG362x1A Models Date and Time Measured Value Upper Limit See TDS 1410 00928 Measurement Uncertainty Frequency Error Value N A Frequency Error Value after 24 hours N A Computed Aging Rate N A ________ per day 2x10 12 per day ...

Page 217: ...c 3rd Harmonic Frequency MHz Measured Value dBc 1 2 Sub Harmonic MHz Measured Value dBc 1 4 Sub Harmonic MHz Measured Value dBc 3 4 Sub Harmonic MHz Measured Value dBc Spec See TDS 11410 00928 Measurement Uncertainty dB Frequencies 9 kHz to 100 MHz 009 1 10 20 30 N A N A N A 2 5 10 1 10 20 30 N A N A N A 2 5 15 1 10 30 45 N A N A N A 2 5 60 1 10 120 180 N A N A N A 2 5 100 1 10 200 300 N A N A N A...

Page 218: ...z 2nd Harmonic Frequency MHz Measured Value dBc 3rd Harmonic Frequency MHz Measured Value dBc 1 2 Sub Harmonic MHz Measured Value dBc 1 4 Sub Harmonic MHz Measured Value dBc 3 4 Sub Harmonic MHz Measured Value dBc Spec See TDS 11410 00928 Measurement Uncertainty dB Frequencies 9 kHz to 100 MHz 009 1 10 20 30 N A N A N A 2 5 10 1 10 20 30 N A N A N A 2 5 15 1 10 30 45 N A N A N A 2 5 60 1 10 120 18...

Page 219: ...50 10dBm 2 651 2 655 30 000 60 0 89 2 650 10dBm 2 655 2 705 100 000 60 0 89 2 650 10dBm 2 705 2 950 100 000 60 1 14 2 650 10dBm 2 000 2 350 100 000 60 0 89 2 650 10dBm 2 950 5 000 100 000 60 1 14 2 650 10dBm 5 600 7 650 100 000 60 1 42 2 650 10dBm 8 250 10 300 100 000 60 1 42 2 650 10dBm 10 900 12 950 100 000 60 1 42 2 650 10dBm 13 550 16 775 30 000 60 1 39 2 650 10dBm 16 775 20 000 30 000 60 1 39...

Page 220: ...Bm 7 250 10 500 30 000 60 1 75 6 950 10dBm 10 500 13 600 30 000 60 1 75 6 950 10dBm 14 200 17 000 30 000 60 1 73 6 950 10dBm 17 000 20 000 30 000 60 1 73 10 950 reference frequency 10dBm 10 949 10 951 30 000 N A N A N A 10 950 10dBm 10 945 10 949 30 000 60 1 75 10 950 10dBm 10 895 10 945 30 000 60 1 75 10 950 10dBm 10 650 10 895 30 000 60 1 75 10 950 10dBm 10 951 10 955 30 000 60 1 75 10 950 10dBm...

Page 221: ...6 750 10dBm 5 883 8 075 30 000 60 1 73 16 750 10dBm 8 675 12 263 30 000 60 1 73 16 750 10dBm 12 863 16 450 10 000 60 1 73 16 750 10dBm 17 050 20 000 10 000 60 1 71 20 001000 reference frequency b 20 0010 00 100 1 N A N A N A Test not performed MG36221A 20 001000 b 40 0000 00 100 1 1 66 Test not performed MG36221A 24 999000 reference frequency b 24 9990 00 100 1 N A N A Test not performed MG36221A ...

Page 222: ...frequency b 39 9990 00 100 1 N A N A Test not performed MG36221A 39 999000 b 36 5155 22 100 1 1 72 Test not performed MG36221A 40 001000 reference frequency b 40 0010 00 100 1 N A N A Test not performed MG36221A 40 001000 b 39 9353 00 100 1 1 73 Test not performed MG36221A a All specifications apply at the lesser of 10 dBm output or Maximum specified leveled output power unless otherwise noted b D...

Page 223: ...000 100 1 60 0 93 1 100000 b 10 dBm 7 600000 100 1 60 1 12 20 001000 reference frequency b 20 001000 100 1 N A N A N A Test not performed MG36221A 20 001000 b 40 000000 100 1 60 1 66 Test not performed MG36221A 24 999000 reference frequency b 24 999000 100 1 N A N A N A Test not performed MG36221A 24 999000 b 45 800000 100 1 60 1 73 Test not performed MG36221A 24 999000 b 49 667000 100 1 60 1 72 T...

Page 224: ...MG36221A a All specifications apply at the lesser of 10 dBm output or Maximum specified leveled output power unless otherwise noted b Dependent on maximum leveled power by options and model number see footnote tables on the following page Section 3 8 Non Harmonic Testing Part 2 All MG362x1A Models Part 2 2 of 2 MG369xC Frequency GHz MG369xC Output Power Level a Spectrum Analyzer Center Freq GHz Sp...

Page 225: ...Frequency Offset Measured Value dBc See TDS for Specs 11410 00928 Measurement Uncertainty dB Test Frequency 15 MHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 30 MHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 60 MHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 120 MHz 10 Hz 4 0 100 Hz 3 0 1 kHz...

Page 226: ...cy 499 MHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 1 0 GHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 2 19 GHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Single Sideband Phase Noise Test Standard All MG362x1A Models Single Sideband Phase Noise 2 of 3 Frequency Offset Measured Value dBc See TDS for Specs...

Page 227: ...kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 10 0 GHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 19 99 GHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Single Sideband Phase Noise Test Standard All MG362x1A Models Single Sideband Phase Noise 3 of 3 Frequency Offset Measured Value dBc See TDS for Specs 11410 00928 Measurement Uncertainty dB ...

Page 228: ...lue dBc Hz See TDS for Specs 11410 00928 Measurement Uncertainty dB Test Frequency 15 MHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 60 MHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 499 MHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 2 19 GHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz...

Page 229: ...Hz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 19 99 GHz 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 Test Frequency 20 01 GHz not performed on MG36221A 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 SSB Phase Noise Option ___ All MG362x1A Models Frequency Offset Measured Value dBc Hz See TDS for Specs 11410 00928 Measurement Uncertainty dB ...

Page 230: ...ision Operator Serial Number Date Options Test Frequency 25 0 GHz not performed on MG36221A 10 Hz 4 0 100 Hz 3 0 1 kHz 2 0 10 kHz 2 0 100 kHz 2 0 1 MHz 2 0 SSB Phase Noise Option ___ All MG362x1A Models Frequency Offset Measured Value dBc Hz See TDS for Specs 11410 00928 Measurement Uncertainty dB ...

Page 231: ...ions Power Line Fan All MG362x1A Models Frequency Offset Measured Value dBc Hz Upper Limit dBc Hz See TDS 11410 00928 Measurement Uncertainty dB Test Frequency 15 MHz 300 Hz 4 0 300 Hz to 1 kHz 3 0 1 kHz 2 0 Test Frequency 60 MHz 300 Hz 4 0 300 Hz to 1 kHz 3 0 1 kHz 2 0 Test Frequency 499 MHz 300 Hz 4 0 300 Hz to 1 kHz 3 0 1 kHz 2 0 ...

Page 232: ...kHz 2 0 Test Frequency 10 0 GHz 300 Hz 4 0 300 Hz to 1 kHz 3 0 1 kHz 2 0 Test Frequency 19 99 GHz 300 Hz 4 0 300 Hz to 1 kHz 3 0 1 kHz 2 0 Test Frequency 20 01 GHz not performed on MG36221A 300 Hz 4 0 300 Hz to 1 kHz 3 0 1 kHz 2 0 Test Frequency 25 0 GHz not performed on MG36221A 300 Hz 4 0 300 Hz to 1 kHz 3 0 1 kHz 2 0 Power Line Fan All MG362x1A Models Frequency Offset Measured Value dBc Hz Uppe...

Page 233: ...11410 00928 Measurement Uncertainty dB Measured Power Non pulse Mode dBm Offset Value dB Final Value dBm Measured Power Non pulse Mode dBm Offset Value dB Final Value dBm 21 dBm 0 28 20 dBm 0 15 19 dBm 0 15 18 dBm 0 15 17 dBm 0 15 16 dBm 0 15 15 dBm 0 15 14 dBm 0 15 13 dBm 0 15 12 dBm 0 15 11 dBm 0 15 10 dBm 0 15 9 dBm 0 15 8 dBm 0 15 7 dBm 0 15 6 dBm 0 15 5 dBm 0 15 4 dBm 0 15 3 dBm 0 15 2 dBm 0 ...

Page 234: ... sheet Note B To determine the lowest power setting The lowest power level is determined by the Model number options installed and test frequency Please refer to the Technical Data Sheet for lowest tested power level On units without Option 2 Attenuator the minimum power is 15 dBm If Option 2 Attenuator is installed the lowest tested power level is 100 dB below the maximum leveled power of the uni...

Page 235: ...u P N 34NFK50 Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 28 20 dBm 0 15 15 dBm 0 15 10 dBm 0 15 5 dBm 0 15 0 dBm 0 15 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 038 45 dBm 0 040 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 236: ...u P N 34NFK50 Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 28 20 dBm 0 15 15 dBm 0 15 10 dBm 0 15 5 dBm 0 15 0 dBm 0 15 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 237: ...u P N 34NFK50 Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 28 20 dBm 0 15 15 dBm 0 15 10 dBm 0 15 5 dBm 0 15 0 dBm 0 15 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 238: ...su P N 34NFK50 Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 28 20 dBm 0 15 15 dBm 0 15 10 dBm 0 15 5 dBm 0 15 0 dBm 0 15 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm ...

Page 239: ...su P N 34NFK50 Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 28 20 dBm 0 15 15 dBm 0 15 10 dBm 0 15 5 dBm 0 15 0 dBm 0 15 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm ...

Page 240: ...su P N 34NFK50 Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 28 20 dBm 0 15 15 dBm 0 15 10 dBm 0 15 5 dBm 0 15 0 dBm 0 15 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm ...

Page 241: ...su P N 34NFK50 Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 28 20 dBm 0 15 15 dBm 0 15 10 dBm 0 15 5 dBm 0 15 0 dBm 0 15 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm ...

Page 242: ...su P N 34NFK50 Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 28 20 dBm 0 15 15 dBm 0 15 10 dBm 0 15 5 dBm 0 15 0 dBm 0 15 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm ...

Page 243: ...pter P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 29 20 dBm 0 17 15 dBm 0 17 10 dBm 0 17 5 dBm 0 17 0 dBm 0 17 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm...

Page 244: ...et L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 29 20 dBm 0 17 15 dBm 0 17 10 dBm 0 17 5 dBm 0 17 0 dBm 0 17 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0 054 70 dBm 0 0...

Page 245: ...et L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 29 20 dBm 0 17 15 dBm 0 17 10 dBm 0 17 5 dBm 0 17 0 dBm 0 17 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0 054 70 dBm 0 0...

Page 246: ...apter P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 29 20 dBm 0 17 15 dBm 0 17 10 dBm 0 17 5 dBm 0 17 0 dBm 0 17 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dB...

Page 247: ...dapter P N 11904D Set L Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 29 20 dBm 0 17 15 dBm 0 17 10 dBm 0 17 5 dBm 0 17 0 dBm 0 17 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dB...

Page 248: ...apter P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 29 20 dBm 0 17 15 dBm 0 17 10 dBm 0 17 5 dBm 0 17 0 dBm 0 17 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dB...

Page 249: ...apter P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 29 20 dBm 0 17 15 dBm 0 17 10 dBm 0 17 5 dBm 0 17 0 dBm 0 17 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dB...

Page 250: ...apter P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 31 20 dBm 0 20 15 dBm 0 20 10 dBm 0 20 5 dBm 0 20 0 dBm 0 20 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dB...

Page 251: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 31 20 dBm 0 20 15 dBm 0 20 10 dBm 0 20 5 dBm 0 20 0 dBm 0 20 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 252: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 31 20 dBm 0 20 15 dBm 0 20 10 dBm 0 20 5 dBm 0 20 0 dBm 0 20 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 253: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 31 20 dBm 0 20 15 dBm 0 20 10 dBm 0 20 5 dBm 0 20 0 dBm 0 20 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 254: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 33 20 dBm 0 20 15 dBm 0 20 10 dBm 0 20 5 dBm 0 20 0 dBm 0 20 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 255: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 33 20 dBm 0 20 15 dBm 0 20 10 dBm 0 20 5 dBm 0 20 0 dBm 0 20 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 256: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 34 20 dBm 0 22 15 dBm 0 22 10 dBm 0 22 5 dBm 0 22 0 dBm 0 22 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 257: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 34 20 dBm 0 22 15 dBm 0 22 10 dBm 0 22 5 dBm 0 22 0 dBm 0 22 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 258: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 34 20 dBm 0 22 15 dBm 0 22 10 dBm 0 22 5 dBm 0 22 0 dBm 0 22 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 259: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 34 20 dBm 0 22 15 dBm 0 22 10 dBm 0 22 5 dBm 0 22 0 dBm 0 22 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 260: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 34 20 dBm 0 22 15 dBm 0 22 10 dBm 0 22 5 dBm 0 22 0 dBm 0 22 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 261: ...er P N 11904D Set L1 Measured Power dBm Offset Value dB Final Value dBm Specification dBm See TDS 11410 00928 Measurement Uncertainty dB 25 dBm 0 34 20 dBm 0 22 15 dBm 0 22 10 dBm 0 22 5 dBm 0 22 0 dBm 0 22 Calculated Offset N A N A N A 5 dBm 0 016 10 dBm 0 019 15 dBm 0 022 20 dBm 0 024 25 dBm 0 027 30 dBm 0 030 35 dBm 0 032 40 dBm 0 035 45 dBm 0 038 50 dBm 0 040 55 dBm 0 043 60 dBm 0 052 65 dBm 0...

Page 262: ...ncy at Minimum Power MHz Minimum Offset Value dB at Minimum Frequency Variation Max Max offset minus Min Min offset dB Variation Spec dB See TDS 11410 00928 Measurement Uncertainty dB Minimum Frequency to 20 MHz no Opt 15 N5532B 504 with adapter P N 34NFK50 5 0 15 20 MHz to 50 MHz no Opt 15 N5532B 504 with adapter P N 34NFK50 10 0 15 50 MHz to Maximum Frequency no Option 15 N5532B 550 with adapter...

Page 263: ...r MHz Minimum Offset Value dB at Minimum Frequency Variation Max Max offset minus Min Min offset dB Variation Spec dB See TDS 11410 00928 Measurement Uncertainty dB 20 MHz no Opt 15 N5532B 504 with adapters P N 34NFK50 5 0 16 20 MHz to 50 MHz no Opt 15 N5532B 504 with adapters P N 34NFK50 10 0 16 50 MHz to 40 GHz no Opt 15 N5532B 550 with adapter P N PE9673 500 0 31 40 GHz to 43 5 GHz no Opt 15 N5...

Page 264: ... Power MHz Minimum Offset Value dB at Minimum Frequency Variation Max Max offset minus Min Min offset dB Variation Spec dB See TDS 11410 00928 Measurement Uncertainty dB Minimum Frequency to 20 MHz no Opt 15 N5532B 504 with adapter P N 34NFK50 5 0 15 20 MHz to 50 MHz no Option 15 N5532B 504 with adapter P N 34NFK50 10 0 15 50 MHz to Maximum Frequency no Option 15 N5532B 550 with adapter P N11904D ...

Page 265: ... Minimum Offset Value dB at Minimum Frequency Variation Max Max offset minus Min Min offset dB Variation Spec dB See TDS 11410 00928 Measurement Uncertainty dB 20 MHz no Opt 15 N5532B 504 with adapters P N 34NFK50 5 0 16 20 MHz to 50 MHz no Option 15 N5532B 504 with adapters P N 34NFK50 10 0 16 50 MHz to 40 GHz no Option 15 N5532B 550 with adapter P N PE9673 500 0 31 40 GHz to 43 5 GHz no Option 1...

Page 266: ...sured Power dBm Frequency at Minimum Power MHz Offset Value dB Final Value Max Offset dBm Specification dBm without Option 2 See TDS 11410 00928 Specification dBm with Option 2 See TDS 11410 00928 Measurement Uncertainty dB Minimum Frequency to 1 999 999 999 99 N5532B 504 with adapter P N 34NFK50 100 0 15 Minimum Frequency to 2 200 000 000 00 N5532B 504 with adapters P N 34NFK50 100 0 16 2 200 000...

Page 267: ...mum Power MHz Offset Value dB Final Value Max Offset dBm Specification dBm without Option 2 See TDS 11410 00928 Specification dBm with Option 2 See TDS 11410 00928 Measurement Uncertainty dB Minimum Frequency to 1 999 999 999 99 N5532B 504 with adapter P N 34NFK50 100 0 15 Minimum Frequency to 2 200 000 000 00 N5532B 504 with adapter P N 34NFK50 200 0 28 2 200 000 000 01 to 20 N5532B 550 with adap...

Page 268: ...ed Power dBm Frequency at Minimum Power MHz Offset Value dB Final Value Max Offset dBm Specification dBm without Option 2 See TDS 11410 00928 Specification dBm with Option 2 See TDS 11410 00928 Measurement Uncertainty dB Minimum Frequency to 1 999 999 999 99 N5532B 504 with adapter P N 34NFK50 100 0 15 Minimum Frequency to 2 200 000 000 00 N5532B 504 with adapters P N 34NFK50 100 0 16 2 200 000 00...

Page 269: ...mum Power MHz Offset Value dB Final Value Max Offset dBm Specification dBm without Option 2 See TDS 11410 00928 Specification dBm with Option 2 See TDS 11410 00928 Measurement Uncertainty dB Minimum Frequency to 1 999 999 999 99 N5532B 504 with adapter P N 34NFK50 100 0 15 Minimum Frequency to 2 200 000 000 00 N5532B 504 with adapter P N 34NFK50 200 0 28 2 200 000 000 01 to 20 N5532B 550 with adap...

Page 270: ... Serial Number Date Options Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Measurement Uncertainty Vmodon None Vmodoff None FMerror N A N A 2 68 Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Measurement Uncertainty Vmodon None Vmodoff None FMerror N A N A 2 68 Measured Test Results Offset Value Final Value Specification See TDS 1...

Page 271: ... Serial Number Date Options Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Measurement Uncertainty Vmodon None Vmodoff None FMerror N A N A 2 68 Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Measurement Uncertainty Vmodon None Vmodoff None FMerror N A N A 2 68 Measured Test Results Offset Value Final Value Specification See TDS 1...

Page 272: ...er Date Options Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Measurement Uncertainty Vmodon None Vmodoff None Merror N A N A 2 68 Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Measurement Uncertainty Vmodon None Vmodoff None Merror N A N A 2 68 Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Mea...

Page 273: ...er Date Options Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Measurement Uncertainty Vmodon None Vmodoff None Merror N A N A 2 68 Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Measurement Uncertainty Vmodon None Vmodoff None Merror N A N A 2 68 Measured Test Results Offset Value Final Value Specification See TDS 11410 00928 Mea...

Page 274: ...ction generator multimeter reading of 0 7070 Vrms 99 8 kHz V Reference 200 kHz 200 kHz V 0 12 500 kHz 500 kHz V 0 12 1 MHz 1 MHz V 0 12 9 98 MHz b b Bandwidth test 9 98 MHz V c c VBW setting on the spectrum analyzer may need to be reduced to 30 Hz to obtain a stable reading 0 12 Function Generator Frequency MG362x1A M Sensitivity Vmodoff dBm Vmodon dBm Mod Index FMflat dB Offset Value dB Final Val...

Page 275: ...alue dB Final Value dB Specification See TDS 11410 00928 Measurement Uncertainty dB 10 kHz 1 rad V 0 12 20 kHz 1 rad V 0 12 50 kHz 1 rad V 0 12 99 8 kHz a a A potential spurious beat note exists at a 100 kHz rate that can interfere with the carrier frequency null measurement Therefore The measurement is performed at a 99 8 kHz rate with a function generator multimeter reading of 0 7070 Vrms 1 rad ...

Page 276: ...ption 12 1 of 3 All tests use power sensor P N 5532B 550 and adapter P N11904D Note The attenuator value and type is determined based on procedure External AM Accuracy vs Frequency at 50 Modulation DUT F1 GHz PK1 PK2 M Specification See TDS 1410 00928 Measurement Uncertainty 1 0 0 35 1 4 0 35 2 2 0 35 2 3 0 35 5 0 74 8 3 0 74 8 4 0 74 14 0 74 20 0 74 23 0 74 26 5 0 74 30 1 32 33 2 92 36 2 92 40 2 ...

Page 277: ...ption 12 2 of 3 All tests use power sensor P N 5532B 550 and adapter P N11904D Note The attenuator value and type is determined based on procedure Internal AM Accuracy vs Frequency at 50 Modulation DUT F1 GHz PK1 PK2 M Specification See TDS 1410 00928 Measurement Uncertainty 1 0 0 35 1 4 0 35 2 2 0 35 2 3 0 35 5 0 74 8 3 0 74 8 4 0 74 14 0 74 20 0 74 23 0 74 26 5 0 74 30 1 32 33 2 92 36 2 92 40 2 ...

Page 278: ...P N 5532B 550 and adapter P N11904D Note The attenuator value and type is determined based on procedure AM Flatness DUT F1 GHz M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 AMflat dB Spec dB See TDS 11410 00926 MU a dB a MU Measurement Uncertainty AM rate Hz 50 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k 10 k N A N A N A 1 0 0 012 1 4 0 012 2 2 0 012 2 3 0 012 5 0 013 8 3 0 013 8 4 0 013 14 0 013 20 0 013 23 0 013 26...

Page 279: ...Fall Time ns Specification ns See TDS 1410 00928 Measurement Uncertainty ns 0 500 000 001 N A 1 200 000 001 N A 1 900 000 001 N A 5 000 000 001 0 023 14 000 000 001 0 023 22 000 000 001 0 023 28 000 000 001 0 023 34 000 000 001 0 023 41 000 000 001 0 023 DUT Frequency GHz Overshoot Specification See TDS 1410 00928 Measurement Uncertainty 0 500 000 001 5 1 200 000 001 5 1 900 000 001 5 5 000 000 00...

Page 280: ... Volts Vpulse Volts Paccuracy dB Specification dB See TDS 1410 00928 Measurement Uncertainty dB 0 050 000 001 0 1 1 200 000 001 0 1 1 900 000 001 0 1 5 000 000 001 0 1 14 000 000 001 0 1 22 000 000 001 0 1 28 000 000 001 0 1 34 000 000 001 0 1 41 000 000 001 0 1 DUT Frequency GHz Vref Volts Vpulse Volts Paccuracy dB Specification dB See TDS 1410 00928 Measurement Uncertainty dB 2 200 000 001 0 1 5...

Page 281: ...r P N 11904D Pulse On Off Ratio MG362x1A Firmware Revision Operator Serial Number Date Options DUT Frequency GHz Pdepth dB Specification dB See TDS 1410 00928 Measurement Uncertainty dB 0 010 0 124 1 0 0 124 1 4 0 124 2 0 0 124 2 2 0 124 2 3 0 12 5 0 0 12 8 3 0 12 8 4 0 15 14 0 0 15 20 0 0 15 23 0 0 15 26 5 0 15 30 0 0 15 33 0 0 18 36 0 0 18 40 0 a a Must change RBW and VBW to 300 Hz 0 18 50 0 a 0...

Page 282: ...ns Fall Time ns Specification ns See TDS 1410 00928 Measurement Uncertainty ns 0 500 000 001 N A 1 200 000 001 N A 1 900 000 001 N A 5 000 000 001 0 01 14 000 000 001 0 01 22 000 000 001 0 01 28 000 000 001 0 01 34 000 000 001 0 01 41 000 000 001 0 01 DUT Frequency GHz Overshoot Specification See TDS 1410 00928 Measurement Uncertainty 0 500 000 001 2 1 200 000 001 2 1 900 000 001 2 5 000 000 001 2...

Page 283: ...pulse Volts Paccuracy dB Specification dB See TDS 1410 00928 Measurement Uncertainty dB 0 050 000 001 0 02 1 200 000 001 0 02 1 900 000 001 0 02 5 000 000 001 0 02 14 000 000 001 0 02 22 000 000 001 0 02 28 000 000 001 0 02 34 000 000 001 0 02 41 000 000 001 0 02 DUT Frequency GHz Vref Volts Vpulse Volts Paccuracy dB Specification dB See TDS 1410 00928 Measurement Uncertainty dB 2 200 000 001 0 02...

Page 284: ...r P N 11904D Pulse On Off Ratio MG362x1A Firmware Revision Operator Serial Number Date Options DUT Frequency GHz Pdepth dB Specification dB See TDS 1410 00928 Measurement Uncertainty dB 0 010 0 124 1 0 0 124 1 4 0 124 2 0 0 124 2 2 0 124 2 3 0 12 5 0 0 12 8 3 0 12 8 4 0 15 14 0 0 15 20 0 0 15 23 0 0 15 26 5 0 15 30 0 0 15 33 0 0 18 36 0 0 18 40 0 a a Must change RBW and VBW to 300 Hz 0 18 50 0 a 0...

Page 285: ...ssages appear briefly and then fade away Persistent messages remain on the display and require user intervention to correct the condition Some messages are logged but not displayed such as messages in the event log Messages may be displayed either in the toolbar or in a pop up window B 2 Error Messages Lock Error In Toolbar Log Persistent ALC unleveled In Toolbar No Log Persistent Power sweep setu...

Page 286: ...t Level In Toolbar Log Persistent Reduce PM Input Level In Toolbar Log Persistent Reduce FM Deviation In Toolbar Log Persistent Reduce PM Deviation In Toolbar Log Persistent Reduce AM Rate In Toolbar Log Persistent Reduce FM Rate In Toolbar Log Persistent Reduce PM Rate In Toolbar Log Persistent ALC unleveled In Toolbar No Log Persistent ...

Page 287: ... In Toolbar Log Transient Reset Completed In Toolbar Log Transient External reference detected switching reference source to external 1 In Toolbar Log Transient External reference disconnected switching reference source to internal 1 In Toolbar Log Transient External reference disconnected switching reference source to Internal High 1 In Toolbar Log Transient External reference disconnected switch...

Page 288: ...rence detected switching time reference source to GPS In Toolbar Log Transient GPS reference no longer available switching time reference source to Internal High In Toolbar Log Transient Could not lock to internal reference In Toolbar Log Persistent Software update files found on USB In Toolbar No Log Transient USB drive 1 ejected In Toolbar No Log Transient Failed to connect to 1 In Toolbar No Lo...

Page 289: ...tart the instrument to use new features In Toolbar No Log Transient Error 1 In Toolbar Log Transient File 1 import successfully In Toolbar No Log Transient File 1 export successfully In Toolbar No Log Transient Save failed File size exceeds save limits Adjust setup and try again In Toolbar Log Transient B 4 Warning Messages Temperature High Warning In Toolbar Log Persistent Shutdown Temperature Re...

Page 290: ...2 V pass 0 85V FPGA core supply Voltage 0 85 V 0 85 V 0 09 V pass CPU Temperature Temperature 37 40 C 50 00 C 50 00 C pass Table B 2 SG Messages Name Type Actual Expected Tolerance Status MOD 2 5V supply Voltage 2 49 V 2 50 V 0 25 V pass MOD 3 3V supply Voltage 3 31 V 3 30 V 0 33 V pass ALC Temperature 59 56 C 30 00 C 60 00 C pass YIG Temperature 40 25 C 30 00 C 60 00 C pass SWF 2 5V supply Voltag...

Page 291: ...Voltage 6 02 V 6 00 V 0 60 V pass REG 9 0V supply Voltage 9 18 V 9 00 V 0 90 V pass REG 10 0V supply Voltage 10 18 V 10 00 V 1 00 V pass REG 15 0V supply Voltage 15 10 V 15 00 V 1 50 V pass REG 16 0V supply Voltage 16 59 V 16 00 V 1 60 V pass REG 24 0V supply Voltage 24 22 V 24 00 V 2 40 V pass REG 25 0V supply Voltage 26 24 V 25 00 V 2 50 V pass REG 30 0V supply Voltage 30 13 V 30 00 V 3 00 V pas...

Page 292: ...B 5 Self Test Messages Instrument Messages B 8 PN 10370 10386 Rev B MG362x1A MM ...

Page 293: ......

Page 294: ...Anritsu utilizes recycled paper and environmentally conscious inks and toner Anritsu Company 490 Jarvis Drive Morgan Hill CA 95037 2809 USA http www anritsu com ...

Reviews: