User’s Manual
166
User-Changeable STA Parameters
The Switch’s factory default setting should cover the majority of installations. However, it is advisable to keep the default settings
as set at the factory; unless, it is absolutely necessary. The user changeable parameters in the Switch are as follows:
Priority
– A Priority for the switch can be set from 0 to 65535. 0 is equal to the highest Priority.
Hello Time
– The Hello Time can be from 1 to 10 seconds. This is the interval between two transmissions of BPDU packets sent
by the Root Bridge to tell all other Switches that it is indeed the Root Bridge. If you set a Hello Time for your Switch, and it is not
the Root Bridge, the set Hello Time will be used if and when your Switch becomes the Root Bridge.
The Hello Time cannot be longer than the Max. Age; otherwise, a configuration error will
occur.
Max. Age
– The Max Age can be from 6 to 40 seconds. At the end of the Max Age, if a BPDU has still not been received from
the Root Bridge, your Switch will start sending its own BPDU to all other Switches for permission to become the Root Bridge. If it
turns out that your Switch has the lowest Bridge Identifier, it will become the Root Bridge.
Forward Delay Timer
– The Forward Delay can be from 4 to 30 seconds. This is the time any port on the
Switch spends in the listening state while moving from the blocking state to the forwarding state.
Observe the following formulas when setting the above parameters:
Max. Age _ 2 x (Forward Delay - 1 second)
Max. Age _ 2 x (Hello Time + 1 second)
Port Priority
– A Port Priority can be from 0 to 240. The lower the number, the greater the probability the port will be chosen as
the Root Port.
Port Cost
– A Port Cost can be set from 0 to 200000000. The lower the number, the greater the probability the port will be
chosen to forward packets.
3. Illustration of STP
A simple illustration of three switches connected in a loop is depicted in the below diagram. In this example, you can anticipate
some major network problems if the STP assistance is not applied. If switch A broadcasts a packet to switch B, switch B will
broadcast it to switch C, and switch C will broadcast it to back to switch A and so on. The broadcast packet will be passed
indefinitely in a loop, potentially causing a network failure. In this example, STP breaks the loop by blocking the connection
between switch B and C. The decision to block a particular connection is based on the STP calculation of the most current
Bridge and Port settings.
Now, if switch A broadcasts a packet to switch C, then switch C will drop the packet at port 2 and the broadcast will end there.
Setting-up STP using values other than the defaults, can be complex. Therefore, you are advised to keep the default factory
settings and STP will automatically assign root bridges/ports and block loop connections. Influencing STP to choose a particular
switch as the root bridge using the Priority setting, or influencing STP to choose a particular port to block using the Port Priority
and Port Cost settings is, however, relatively straight forward.
Содержание IGS-10020
Страница 1: ...User s Manual...
Страница 31: ...User s Manual 31 IGS 10020PT IGS 10020PT Dimensions W x D x H 72 x 107 x 152mm...
Страница 32: ...User s Manual 32 IGS 10020HPT IGS 10020HPT Dimensions W x D x H 72 x 107 x 152mm...
Страница 33: ...User s Manual 33 IGS 10080MFT IGS 10080MFT Dimensions W x D x H 72 x 107x 152mm...
Страница 34: ...User s Manual 34 IGS 12040MT IGS 12040MT Dimensions W x D x H 72 x 107 x 152mm...
Страница 35: ...User s Manual 35 IGS 20040MT IGS 20040MT Dimensions W x D x H 72 x 107 x 152mm...
Страница 36: ...User s Manual 36 IGS 20160HPT IGS 20160HPT Dimensions W x D x H 84 x 107 x 152mm...
Страница 46: ...User s Manual 46 Figure 2 16 IGS 10080MFT Upper Panel Figure 2 17 IGS 12040MT Upper Panel...
Страница 47: ...User s Manual 47 Figure 2 18 IGS 20040MT Upper Panel Figure 2 19 IGS 20160HPT Upper Panel...
Страница 181: ...User s Manual 181 Figure 4 8 2 Multicast Flooding Figure 4 8 3 IGMP Snooping Multicast Stream Control...