pretending to be the target host. After receiving the reply, Host A then sends data directly to
NetDefendOS which forwards the data to host B. In the process NetDefendOS checks the traffic
against the configured rule sets.
Setting Up Proxy ARP
Setting up proxy ARP is done by specifying the option for a route in a routing table. Let us suppose
we have a network and it is divided into two parts which are called net_1 and net_2.
The network net_1 is connected to the interface if1 and the network net_2 is connected to the
interface if2. In NetDefendOS there will be a route configured that says net_1 can be found on if1.
This might be called route_1.
For route_1 it is possible to specify the option that this network should be proxy ARP'ed on
interface if2.. Now any ARP request issued by a net_2 host connected to if2 looking for an IP
address in net_1 will get a positive response from NetDefendOS. In other words, NetDefendOS will
pretend that the net_1 address is found on if2 and will forward data traffic to net_1.
In the same way, net_2 could be published on the interface if1 so that there is a mirroring of routes
and ARP proxy publishing.
Route #
Network
Interface
Proxy ARP Published
1
net_1
if1
if2
2
net_2
if2
if1
In this way there is complete separation of the sub-networks but the hosts are unaware of this. The
routes are a pair which are a mirror image of each other but there is no requirement that proxy ARP
is used in a pairing like this.
Keep in mind that if the host has an ARP request for an IP address outside of the local network then
this will be sent to the gateway configured for that host. The entire example is illustrated below.
Figure 4.4. A Proxy ARP Example
Transparent Mode as an Alternative
Transparent Mode is an alternative and preferred way of splitting Ethernet networks. Setup is
simpler than using proxy ARP since only the appropriate switch routes need to be defined. Using
switch routes is fully explained in Section 4.7, “Transparent Mode”.
Proxy ARP depends on static routing where the location of networks on interfaces are known and
usually fixed. Transparent mode is more suited to networks whose interface location can change.
4.2.6. Proxy ARP
Chapter 4. Routing
163
Содержание DFL-1600 - Security Appliance
Страница 27: ...1 3 NetDefendOS State Engine Packet Flow Chapter 1 NetDefendOS Overview 27 ...
Страница 79: ...2 7 3 Restore to Factory Defaults Chapter 2 Management and Maintenance 79 ...
Страница 146: ...3 9 DNS Chapter 3 Fundamentals 146 ...
Страница 227: ...4 7 5 Advanced Settings for Transparent Mode Chapter 4 Routing 227 ...
Страница 241: ...5 4 IP Pools Chapter 5 DHCP Services 241 ...
Страница 339: ...6 7 Blacklisting Hosts and Networks Chapter 6 Security Mechanisms 339 ...
Страница 360: ...7 4 7 SAT and FwdFast Rules Chapter 7 Address Translation 360 ...
Страница 382: ...8 3 Customizing HTML Pages Chapter 8 User Authentication 382 ...
Страница 386: ... The TLS ALG 9 1 5 The TLS Alternative for VPN Chapter 9 VPN 386 ...
Страница 439: ...Figure 9 3 PPTP Client Usage 9 5 4 PPTP L2TP Clients Chapter 9 VPN 439 ...
Страница 450: ...9 7 6 Specific Symptoms Chapter 9 VPN 450 ...
Страница 488: ...10 4 6 Setting Up SLB_SAT Rules Chapter 10 Traffic Management 488 ...
Страница 503: ...11 6 HA Advanced Settings Chapter 11 High Availability 503 ...
Страница 510: ...12 3 5 Limitations Chapter 12 ZoneDefense 510 ...
Страница 533: ...13 9 Miscellaneous Settings Chapter 13 Advanced Settings 533 ...