185
7.
4 Miscellaneous F
unctions f
o
r Cont
our
ing Beha
vior
Feed rate at circular arcs: M109/M110/M111
Standard behavior
The TNC applies the programmed feed rate to the path of the tool
center.
Behavior at circular arcs with M109
The TNC adjusts the feed rate for circular arcs at inside and outside
contours such that the feed rate at the tool cutting edge remains
constant.
Behavior at circular arcs with M110
The TNC keeps the feed rate constant for circular arcs at inside
contours only. At outside contours, the feed rate is not adjusted.
Effect
M109 and M110 become effective at the start of block.
To cancel M109 and M110, enter M111.
Calculating the radius-compensated path in
advance (LOOK AHEAD): M120
Standard behavior
If the tool radius is larger than the contour step that is to be machined
with radius compensation, the TNC interrupts program run and
generates an error message. M97(see “Machining small contour
steps: M97” on page 182): Although you can use M97 to inhibit the
error message, this will result in dwell marks and will also move the
corner.
If the programmed contour contains undercut features, the tool may
damage the contour.
Behavior with M120
The TNC checks radius-compensated paths for contour undercuts and
tool path intersections, and calculates the tool path in advance from
the current block. Areas of the contour that might be damaged by the
tool, are not machined (dark areas in figure at right). You can also use
M120 to calculate the radius compensation for digitized data or data
created on an external programming system. This means that
deviations from the theoretical tool radius can be compensated.
Use LA (
L
ook
A
head) behind M120 to define the number of blocks
(maximum: 99) that you want the TNC to calculate in advance. Note
that the larger the number of blocks you choose, the higher the block
processing time will be.
M110 is also effective for the inside machining of circular
arcs using contour cycles. If you define M109 or M110
before calling a machining cycle, the adjusted feed rate is
also effective for circular arcs within machining cycles. The
initial state is restored after finishing or aborting a
machining cycle.
X
Y
Summary of Contents for TNC 426
Page 3: ......
Page 4: ......
Page 8: ...IV...
Page 10: ...VI...
Page 26: ......
Page 27: ...1 Introduction...
Page 41: ...2 Manual Operation and Setup...
Page 54: ......
Page 55: ...3 Positioning with Manual Data Input MDI...
Page 59: ...4 Programming Fundamentals of NC File Management Programming Aids Pallet Management...
Page 122: ......
Page 123: ...5 Programming Tools...
Page 153: ...6 Programming Programming Contours...
Page 201: ...7 Programming Miscellaneous functions...
Page 226: ......
Page 227: ...8 Programming Cycles...
Page 366: ......
Page 367: ...9 Programming Subprograms and Program Section Repeats...
Page 381: ...10 Programming Q Parameters...
Page 424: ......
Page 425: ...11 Test run and Program Run...
Page 443: ...12 MOD Functions...
Page 472: ......
Page 473: ...13 Tables and Overviews...
Page 496: ......