WAGO-I/O-SYSTEM 750
Fieldbus Communication 203
750-880, 750-880/025-000 ETHERNET Programmable Fieldbus Controller
Manual
Version 1.0.1
Pos: 90 /Alle Serien (Allgemeine Module)/Überschriften für alle Serien/Feldbuskommunikation - Überschrift 1 @ 4\mod_1241433862621_21.doc @ 32212 @ 1 @ 1
12 Fieldbus
Communication
Pos: 91.1 /Alle Serien (Allgemeine Module)/Feldbuskommunikation/ETHERNET/ETHERNET-Einleitungstext @ 4\mod_1236763733502_21.doc @ 28163 @ @ 1
Fieldbus communication between master application and a WAGO fieldbus
coupler/controller based on the ETHERNET standard normally occurs via an
implemented fieldbus-specific application protocol.
Depending on the application, this can be e.g., MODBUS/TCP (UDP),
EtherNet/IP, BACnet/IP, KNXnet/IP, PROFINET, SERCOS III or other.
In addition to the ETHERNET standard and the fieldbus-specific application
protocol, there are also other communications protocols important for reliable
communication and data transmission and other related protocols for configuring
and diagnosing the system implemented in the WAGO fieldbus coupler/controller
based on ETHERNET.
These protocols are explained in more detail in the other sections.
Pos: 91.2 /Alle Serien (Allgemeine Module)/Feldbuskommunikation/ETHERNET/Implementierte Protokolle - Überschrift 2 (für ETHERNET-Kurzbeschreibung) @ 4\mod_1236766863780_21.doc @ 28180 @ 2 @ 1
12.1
Implemented Protocols
Pos: 91.3 /Alle Serien (Allgemeine Module)/Feldbuskommunikation/ETHERNET/Kommunikationsprotokolle - Überschrift 3 @ 4\mod_1237210733218_21.doc @ 28496 @ 3 @ 1
12.1.1 Communication Protocols
Pos: 92 /Alle Serien (Allgemeine Module)/Feldbuskommunikation/ETHERNET/IP (Internet Protocol) @ 4\mod_1237210825239_21.doc @ 28499 @ 4 @ 1
12.1.1.1 IP (Internet Protocol)
The Internet protocol divides datagrams into segments and is responsible for their
transmission from one network subscriber to another. The stations involved may
be connected to the same network or to different physical networks which are
linked together by routers.
Routers are able to select various paths (network transmission paths) through
connected networks, and bypass congestion and individual network failures.
However, as individual paths may be selected which are shorter than other paths,
datagrams may overtake each other, causing the sequence of the data packets to be
incorrect.
Therefore, it is necessary to use a higher-level protocol, for example, TCP to
guarantee correct transmission.
IP Packet
In addition to the data units to be transported, the IP data packets contain a range
of address information and additional information in the packet header.
Table 72: IP Packet
IP Header
IP Data
The most important information in the IP header is the IP address of the
transmitter and the receiver and the transport protocol used.