Command Summary - Electronic Gearing
COMMAND
DESCRIPTION
GA n
Specifies master axes for gearing where:
n = X,Y,Z or W or A,B,C,D,E,F,G,H for main encoder as master
n = CX,CY,CZ, CW
or
CA, CB,CC,CD,CE,CF,CG,CH for commanded position.
n = DX,DY,DZ or DW or DA, DB, DC, DD, DE, DF,DG,DH for auxiliary encoders
n = S or T for gearing to coordinated motion.
GD a,b,c,d,e,f,g,h
Sets the distance the master will travel for the gearing change to take full effect.
_GPn
This operand keeps track of the difference between the theoretical distance traveled if
gearing changes took effect immediately, and the distance traveled since gearing
changes take effect over a specified interval.
GR a,b,c,d,e,f,g,h
Sets gear ratio for slave axes. 0 disables electronic gearing for specified axis.
GM a,b,c,d,e,f,g,h
X = 1 sets gantry mode, 0 disables gantry mode
MR x,y,z,w
Trippoint for reverse motion past specified value. Only one field may be used.
MF x,y,z,w
Trippoint for forward motion past specified value. Only one field may be used.
Example - Simple Master Slave
Master axis moves 10000 counts at slew speed of 100000 counts/sec. Y is defined as the master. X,Z,W are geared
to master at ratios of 5,-.5 and 10 respectively.
GA Y,,Y,Y
Specify master axes as Y
GR 5,,-.5,10
Set gear ratios
PR ,10000
Specify Y position
SP ,100000
Specify Y speed
BGY
Begin motion
Example - Electronic Gearing
Objective: Run two geared motors at speeds of 1.132 and -0.045 times the speed of an external master. The master
is driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder).
Solution: Use a DMC-4030 controller, where the Z-axis is the master and X and Y are the geared axes.
MO Z
Turn Z off, for external master
GA Z, Z
Specify Z as the master axis for both X and Y.
GR 1.132,-.045
Specify gear ratios
Now suppose the gear ratio of the X-axis is to change on-the-fly to 2. This can be achieved by commanding:
GR 2
Specify gear ratio for X axis to be 2
Example - Gantry Mode
In applications where both the master and the follower are controlled by the DMC-40x0 controller, it may be desired
to synchronize the follower with the commanded position of the master, rather than the actual position. This
eliminates the coupling between the axes which may lead to oscillations.
For example, assume that a gantry is driven by two axes, X,Y, on both sides. This requires the gantry mode for
strong coupling between the motors. The X-axis is the master and the Y-axis is the follower. To synchronize Y
with the commanded position of X, use the instructions:
GA, CX
Specify the commanded position of X as master for Y.
DMC-40x0 User Manual
Chapter 6 Programming Motion
•
98
Содержание DMC-4040
Страница 17: ...DMC 4080 Layout Figure 2 2 Outline of the of the DMC 4080 DMC 40x0 User Manual Chapter 2 Getting Started 8...
Страница 19: ...DMC 4040 Dimensions Figure 2 5 Dimensions of DMC 4040 DMC 40x0 User Manual Chapter 2 Getting Started 10...
Страница 20: ...DMC 4080 Dimensions Figure 2 6 Dimensions of DMC 4080 Chapter 2 Getting Started 11 DMC 40x0 User Manual...
Страница 54: ...Chapter 3 Connecting Hardware 45 DMC 40x0 User Manual...
Страница 55: ...DMC 40x0 User Manual Chapter 3 Connecting Hardware 46...
Страница 56: ...Chapter 3 Connecting Hardware 47 DMC 40x0 User Manual...
Страница 73: ...Figure 4 1 GalilTools DMC 40x0 User Manual Chapter 4 Software Tools and Communication 64...
Страница 185: ...THIS PAGE LEFT BLANK INTENTIONALLY DMC 40x0 User Manual Chapter 7 Application Programming 176...
Страница 205: ...THIS PAGE LEFT BLANK INTENTIONALLY DMC 40x0 User Manual Chapter 10 Theory of Operation 196...
Страница 220: ...Step 2 Remove ICM For DMC 4040 Proceed to Step 3 Configure Circuit Appendices 211 DMC 40x0 User Manual...
Страница 222: ...Step 2 Remove ICM s Appendices 213 DMC 40x0 User Manual...
Страница 232: ...DMC 4080 Steps 4 and 5 Step 4 Replace ICM s Appendices 223 DMC 40x0 User Manual...