A virtual LAN (VLAN) is configured on all node ports in the ring. All ring ports must be members of the
Member VLAN and the Control VLAN.
The Member VLAN is the VLAN used to transmit data as described earlier.
The Control VLAN is used to perform the health checks on the ring. The Control VLAN can always pass
through all ports in the ring, including the secondary port of the Master node.
Ring Status
The ring failure notification and the ring status checks provide two ways to ensure the ring remains up
and active in the event of a switch or port failure.
Ring Checking
At specified intervals, the Master node sends a ring health frame (RHF) through the ring. If the ring is
complete, the frame is received on its secondary port and the Master node resets its fail-period timer and
continues normal operation.
If the Master node does not receive the RHF before the fail-period timer expires (a configurable timer),
the Master node moves from the Normal state to the Ring-Fault state and unblocks its Secondary port.
The Master node also clears its forwarding table and sends a control frame to all other nodes, instructing
them to also clear their forwarding tables. Immediately after clearing its forwarding table, each node
starts learning the new topology.
Ring Failure
If a Transit node detects a link down on any of its ports on the FRRP ring, it immediately sends a link-
down control frame on the Control VLAN to the Master node.
When the Master node receives this control frame, the Master node moves from the Normal state to the
Ring-Fault state and unblocks its Secondary port. The Master node clears its routing table and sends a
control frame to all other ring nodes, instructing them to clear their routing tables as well. Immediately
after clearing its routing table, each node begins learning the new topology.
Ring Restoration
The Master node continues sending ring health frames out its primary port even when operating in the
Ring-Fault state.
After the ring is restored, the next status check frame is received on the Master node's Secondary port.
This causes the Master node to transition back to the Normal state. The Master node then logically blocks
non-control frames on the Secondary port, clears its own forwarding table, and sends a control frame to
the Transit nodes, instructing them to clear their forwarding tables and re-learn the topology.
During the time between the Transit node detecting that its link is restored and the Master node
detecting that the ring is restored, the Master node’s Secondary port is still forwarding traffic. This can
create a temporary loop in the topology. To prevent this, the Transit node places all the ring ports
transiting the newly restored port into a temporary blocked state. The Transit node remembers which
port has been temporarily blocked and places it into a pre- forwarding state. When the Transit node in
the pre-forwarding state receives the control frame instructing it to clear its routing table, it does so and
382
Force10 Resilient Ring Protocol (FRRP)
Содержание S4820T
Страница 1: ...Dell Configuration Guide for the S4820T System 9 8 0 0 ...
Страница 282: ...Dell 282 Control Plane Policing CoPP ...
Страница 569: ...Figure 62 Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol LACP 569 ...
Страница 572: ...Figure 64 Inspecting a LAG Port on BRAVO Using the show interface Command 572 Link Aggregation Control Protocol LACP ...
Страница 573: ...Figure 65 Inspecting LAG 10 Using the show interfaces port channel Command Link Aggregation Control Protocol LACP 573 ...
Страница 617: ...mac address table static multicast mac address vlan vlan id output range interface Microsoft Network Load Balancing 617 ...
Страница 622: ...Figure 81 Configuring Interfaces for MSDP 622 Multicast Source Discovery Protocol MSDP ...
Страница 623: ...Figure 82 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 623 ...
Страница 624: ...Figure 83 Configuring PIM in Multiple Routing Domains 624 Multicast Source Discovery Protocol MSDP ...
Страница 629: ...Figure 86 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 629 ...
Страница 630: ...Figure 87 MSDP Default Peer Scenario 3 630 Multicast Source Discovery Protocol MSDP ...
Страница 751: ...10 11 5 2 00 00 05 00 02 04 Member Ports Te 1 2 1 PIM Source Specific Mode PIM SSM 751 ...
Страница 905: ...Figure 112 Single and Double Tag First byte TPID Match Service Provider Bridging 905 ...
Страница 979: ...6 Member not present 7 Member not present Stacking 979 ...
Страница 981: ...storm control Storm Control 981 ...
Страница 999: ... Te 1 1 0 INCON Root Rootguard Te 1 2 0 LIS Loopguard Te 1 3 0 EDS Shut Bpduguard Spanning Tree Protocol STP 999 ...
Страница 1103: ...Figure 134 Setup OSPF and Static Routes Virtual Routing and Forwarding VRF 1103 ...