Link Dampening
Interface state changes occur when interfaces are administratively brought up or down or if an interface
state changes.
Every time an interface changes a state or flaps, routing protocols are notified of the status of the routes
that are affected by the change in state. These protocols go through the momentous task of re-
converging. Flapping; therefore, puts the status of entire network at risk of transient loops and black
holes.
Link dampening minimizes the risk created by flapping by imposing a penalty for each interface flap and
decaying the penalty exponentially. After the penalty exceeds a certain threshold, the interface is put in an
Error-Disabled state and for all practical purposes of routing, the interface is deemed to be “down.” After
the interface becomes stable and the penalty decays below a certain threshold, the interface comes up
again and the routing protocols re-converge.
Link dampening:
• reduces processing on the CPUs by reducing excessive interface flapping.
• improves network stability by penalizing misbehaving interfaces and redirecting traffic.
• improves convergence times and stability throughout the network by isolating failures so that
disturbances are not propagated.
Important Points to Remember
• Link dampening is not supported on VLAN interfaces.
• Link dampening is disabled when the interface is configured for port monitoring.
• You can apply link dampening to Layer 2 and Layer 3 interfaces.
• You can configure link dampening on individual interfaces in a LAG.
Enabling Link Dampening
To enable link dampening, use the following command.
• Enable link dampening.
INTERFACE mode
dampening
Examples of the
show interfaces dampening
Commands
To view the link dampening configuration on an interface, use the
show config
command.
R1(conf-if-te-1/1)#show config
!
interface TenGigabitEthernet 1/1
ip address 10.10.19.1/24
dampening 1 2 3 4
no shutdown
462
Interfaces
Содержание S4820T
Страница 1: ...Dell Configuration Guide for the S4820T System 9 8 0 0 ...
Страница 282: ...Dell 282 Control Plane Policing CoPP ...
Страница 569: ...Figure 62 Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol LACP 569 ...
Страница 572: ...Figure 64 Inspecting a LAG Port on BRAVO Using the show interface Command 572 Link Aggregation Control Protocol LACP ...
Страница 573: ...Figure 65 Inspecting LAG 10 Using the show interfaces port channel Command Link Aggregation Control Protocol LACP 573 ...
Страница 617: ...mac address table static multicast mac address vlan vlan id output range interface Microsoft Network Load Balancing 617 ...
Страница 622: ...Figure 81 Configuring Interfaces for MSDP 622 Multicast Source Discovery Protocol MSDP ...
Страница 623: ...Figure 82 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 623 ...
Страница 624: ...Figure 83 Configuring PIM in Multiple Routing Domains 624 Multicast Source Discovery Protocol MSDP ...
Страница 629: ...Figure 86 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 629 ...
Страница 630: ...Figure 87 MSDP Default Peer Scenario 3 630 Multicast Source Discovery Protocol MSDP ...
Страница 751: ...10 11 5 2 00 00 05 00 02 04 Member Ports Te 1 2 1 PIM Source Specific Mode PIM SSM 751 ...
Страница 905: ...Figure 112 Single and Double Tag First byte TPID Match Service Provider Bridging 905 ...
Страница 979: ...6 Member not present 7 Member not present Stacking 979 ...
Страница 981: ...storm control Storm Control 981 ...
Страница 999: ... Te 1 1 0 INCON Root Rootguard Te 1 2 0 LIS Loopguard Te 1 3 0 EDS Shut Bpduguard Spanning Tree Protocol STP 999 ...
Страница 1103: ...Figure 134 Setup OSPF and Static Routes Virtual Routing and Forwarding VRF 1103 ...