rate
Baud
1)
(SPIBRR
LSPCLK
+
=
0
SPIBRR
when
¹
4
LSPCLK
=
3
2,
1,
0,
SPIBRR
when
=
TMS320F2810, TMS320F2811, TMS320F2812
TMS320C2810, TMS320C2811, TMS320C2812
SPRS174T – APRIL 2001 – REVISED MAY 2012
www.ti.com
4.7
Serial Peripheral Interface (SPI) Module
The F281x and C281x devices include the four-pin serial peripheral interface (SPI) module. The SPI is a
high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (one to
sixteen bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI
is used for communications between the DSP controller and external peripherals or another processor.
Typical applications include external I/O or peripheral expansion through devices such as shift registers,
display drivers, and ADCs. Multidevice communications are supported by the master/slave operation of
the SPI.
The SPI module features include:
•
Four external pins:
–
SPISOMI: SPI slave-output/master-input pin
–
SPISIMO: SPI slave-input/master-output pin
–
SPISTE: SPI slave transmit-enable pin
–
SPICLK: SPI serial-clock pin
NOTE: All four pins can be used as GPIO, if the SPI module is not used.
•
Two operational modes: master and slave
•
Baud rate: 125 different programmable rates
Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted
such that the peripheral speed is less than the I/O buffer speed limit—20 MHz maximum.
•
Data word length: one to sixteen data bits
•
Four clocking schemes (controlled by clock polarity and clock phase bits) include:
–
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
–
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
–
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
–
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
•
Simultaneous receive and transmit operation (transmit function can be disabled in software)
•
Transmitter and receiver operations are accomplished through either interrupt-driven or polled
algorithms.
•
Nine SPI module control registers: Located in control register frame beginning at address 7040h.
NOTE: All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When
a register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read as
zeros. Writing to the upper byte has no effect.
Enhanced features:
•
16-level transmit/receive FIFO
•
Delayed transmit control
80
Peripherals
Copyright © 2001–2012, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s):
TMS320F2810 TMS320F2811 TMS320F2812 TMS320C2810 TMS320C2811 TMS320C2812