background image

B Y T E S  an d   C Y C L E S  p e r

 

IN S T R U C T IO N  

(Continued)

The  following  table  shows the  instructions  assigned  to  un­
used opcodes. This table is for information only. The opera­
tions  performed  are  subject  to  change  without  notice.  Do 

not use these opcodes.

Unused

Opcode

Instruction

Unused

Opcode

Instruction

60

NOP

A9

NOP

61

NOP

AF

LD A,  [B]

62

NOP

B1

HC

63

NOP

B4

NOP

67

NOP

B5

NOP

8C

RET

B7

X A,  [X]

99

NOP

B9

NOP

9F

LD [B],  #i

BF

LD A,  [X]

A7

X A, [B]

A8

NOP

O p tio n   L ist

The  mask  programmable options  are  listed  below.  The op­
tions are programmed at the same time as the ROM pattern 
to  provide  the  user  with  hardware  flexibility  to  a  variety  of 
oscillation and  packaging configuration.

OPTION 1: OKI INPUT

=   1

Crystal  (CKI/IO) CKO for crystal  configuration

=  2

External  (CKI/IO)  CKO available as G7  input

=   3

R/C  (CKI/IO) CKO available as G7  input

OPTION 2: BROWN OUT

=   1

Enable  Brown Out Detection

=  2

Disable  Brown  Out Detection

OPTION 3: BONDING

—  1

2o-|jiii  D ir

=  2

20-pin  DIP/SO

=  3

16-pin  SO

=  4

28-pin  SO

D e v e lo p m e n t S u p p o rt

IN-CIRCUIT EMULATOR

The  MetaLink  iceMASTERTM-COP8  Model  400  In-Circuit 

Emulator  for  the  COP8  family  of  microcontrollers  features 
high-performance operation, ease of use,  and an extremely

flexible  user-interface  for  maximum  productivity.  Inter­
changeable  probe  cards,  which  connect  to  the  standard 
common base, support the various configurations and pack­
ages of the COP8 family.

The iceMASTER provides real time, full speed emulation up 
to  10  MHz,  32  kBytes of  emulation  memory and  4k frames 
of  trace  buffer  memory.  The  user  may  define  as  many  as 

32k  trace  and  break  triggers  which  can  be  enabled,  dis­
abled, set or cleared. They can be simple triggers based on 
code or address ranges or complex triggers based on code 
address, direct address,  opcode value, opcode class or im­
mediate operand.  Complex breakpoints can  be ANDed and 
ORed  together.  Trace  information  consists  of  address  bus 
values, opcodes and user selectable probe clips status (ex­
ternal  event  lines).  The  trace  buffer  can be  viewed  as  raw 
hex or as disassembled instructions.  The  probe  clip  bit val­
ues can  be displayed in  binary,  hex or digital waveform for­
mats.

During  single-step  operation  the  dynamically  annotated 
code  feature  displays  the  contents  of  all  accessed  (read 
and write)  memory locations and  registers,  as well  as flow- 
of-control direction change markers next to each  instruction 
executed.

The iceMASTER’s performance analyzer offers a resolution 
of  better  than  6  p.s.  The  user  can  easily  monitor  the  time 
spent  executing  specific  portions  of  code  and  find  “ hot 

spots”  or  “ dead  code” .  Up  to  15  independent  memory  ar­
eas based on code address or label ranges can be defined. 
Analysis  results  can  be  viewed  in  bargraph  format  or  as 
actual frequency count.

Emulator  memory  operations  for  program  memory  include 

single line assembler, disassembler, view, change and write 
to file.  Data memory operations include fill,  move,  compare, 
dump  to  file,  examine  and  modify.  The  contents  of  any 
memory space can be directly viewed and modified from the 
corresponding window.

The  iceMASTER  comes with  an  easy  to  use  windowed  in­
terface.  Each  window can  be  sized,  highlighted,  color-con­
trolled,  adueu,  (

ji

  ieiiloved  compieieiy.  Commands  can  be 

accessed via pull-down-menus and/or redefinable hot keys. 
A  context  sensitive  hypertext/hyperlinked  on-line  help  sys­
tem  explains  clearly  the  options  the  user  has  from  within 
any window.

The  iceMASTER  connects  easily to  a  PC  via  the  standard 
COMM  port  and  its  115.2  kBaud  serial  link  keeps  typical 
program download time to under 3  seconds.

The following tables list the emulator and probe cards order­

ing information.

1-73

CQP820CJ

/COP

822

CJ/C

OP8

23C

J

Summary of Contents for COP820CJ

Page 1: ...perating at a 1 jus per in struction rate Features Low cost 8 bit Microcontroller n Fully static CMOS n 1 jus instruction time Low current drain Low current static HALT mode Single supply operation 2 5V to 6 0V 1024 x 8 on chip ROM 64 bytes on chip RAM WATCHDOG Timer Comparator Modulator Timer High speed PWM Timer for IR Transmission Multi Input Wakeup on the 8 bit Port L Brown Out Protection 4 hi...

Page 2: ...5 mA CKI 4 MHz Vcc 4 0V tc 2 5 fis 2 0 mA CKI 1 MHz Vcc 4 0V tc 10 jxs 1 5 mA HALT Current with Brown Out Disbled Note 3 VCc 6V CKI 0 MHz 1 10 p A HALT Current with Brown Out Enabled VCc 6V CKI 0 MHz 50 110 juA BrownOut Trip Level 1 8 3 1 4 2 Brown Out Enabled INPUT LEVELS V H V l Reset CKI Logic High 0 8 VCC V Logic Low All Other Inputs 0 2 VCC V Logic High 0 7 VCC V Logic Low 0 2 VCC V Hi Z Inpu...

Page 3: ...low Vcc The effective resistance to Vcc is 750ft typical These two pins will not latch up The voltage at the pins must be limited to less than 14V AC Electrical Characteristics 40 C Ta 85 C unless otherwise specified Parameter Conditions Min Typ Max Units Instruction Cycle Time tc Crystal Resonator 4 5V Vcc 6 0V 1 DC JUS 2 5V VCc 4 5V 2 5 DC JUS R C Oscillator 4 5V VCc 6 0V 3 DC JUS 2 5V VCc 4 5V ...

Page 4: ...5 S K 2 27 G2 G 6 S I 3 26 G1 G 7 C K 0 4 25 G 0 IN T C K I 5 24 RESET w c r snrv CC wnw I0 7 22 D3 1 1 8 21 02 I 2 9 20 01 I 3 10 19 D O L0 C M P 0U T 11 18 L7 M0D0UT L1 CMPIN 12 17 L6 L2 CMPIN 13 16 L5 L3 14 15 L4 T L D D 11208 3 Top View Order Number COPCJ820 XXX N or COPCJ820 XXX WM G4 S0 1 20 G3 TI0 G 5 S K 2 19 G2 G6 SI 3 18 G1 07 C K0 4 17 C O IM T CKI 5 16 RESET vc c 6 15 GND L0 CMP0UT 7 1...

Page 5: ...COP820CJ COP822CJ COP823CJ 1 54 ...

Page 6: ... MIWU high sink current capability L6 MIWU high sink current capability L7 MIWU or MODOUT high sink current capability The selection of alternate Port L functions is done through registers WKEN 00C9 to enable MIWU and CNTRL2 OOCC to enable comparator and modulator All eight L pins have Schmitt Triggers on their inputs PORT G is an 8 bit port with 6 I O pins G0 G5 and 2 input pins G6 G7 All eight G...

Page 7: ...emory is addressed directly by the in struction or indirectly through B X and SP registers The device has 64 bytes of RAM Sixteen bytes of RAM are mapped as registers these can be loaded immediately decremented and tested Three specific registers X B and SP are mapped into this space the other registers are avail able for general usage Any bit of data memory can be directly set reset or tested All...

Page 8: ...a 256tc delay This delay allows the oscillator to stabilize before the device ex its the reset state The delay is not used if the clock option is either R C or external clock The contents of data registers and RAM are unknown following a Brown Out reset The external reset takes priority over Brown Out Reset and will deactivate the 256 tc cycles delay if in progress The Brown Out reset takes priori...

Page 9: ...ke a R C oscillator CKO is available as a general purpose input and or HALT control Table II shows variation in the oscilla tor frequencies as functions of the component R and C values Functional Description Continued TABLE I Crystal Oscillator Configuration R1 R2 C1 C2 CKI Freq Conditions kn Mft PF PF MHz 0 1 30 30 36 10 Vcc 5V 0 1 30 30 36 4 VCC 5V 5 6 1 100 100 156 0 455 in II o o TABLE II RC O...

Page 10: ... and freuqency stability The WATCHDOG timer consisting of an 8 bit prescaler followed by an 8 bit counter is used to gen erate a fixed delay of 256tc to ensure that the oscillator has indeed stabilized before allowing instruction execution In this case upon detecting a valid WAKEUP signal only the oscillator circuitry is enabled The WATCHDOG Counter and Prescaler are each loaded with a value of FF...

Page 11: ...here tc is the instruction cycle time MICROWIRE PLUS OPERATION Setting the BUSY bit in the PSW register causes the MI CROWIRE PLUS arrangement to start shifting the data It gets reset when eight data bits have been shifted The user may reset the BUSY bit by software to allow less than 8 bits to shift The device may enter the MICROWIRE PLUS mode either as a Master or as a Slave Figure 7 shows how t...

Page 12: ...tive edge Upon underflow the contents of the register R1 are automatically copied into the counter The underflow can also be programmed to generate an interrupt Figure 9 T im er C o u n ter The device has a powerful 16 bit timer with an associated 16 bit register enabling it to perform extensive timer func tions The timer T1 and its register R1 are each organized as two 8 bit read write registers ...

Page 13: ...ms The WATCHDOG can be en abled or disabled only once after the device is reset as a result of brown out reset or external reset On power up the WATCHDOG is disabled The WATCHDOG is enabled by writing a 1 to WDREN bit resides in WDREG register Once enabled the user program should write periodically into the 8 bit counter before the counter underflows The 8 bit counter WDCNT is memory mapped at add...

Page 14: ...he HALT mode It is a read only bit WDREN bit resides in a separate register bit 0 of WDREG This bit enables the WATCHDOG timer to generate a reset The bit is cleared upon Brown Out reset or external reset The bit under software control can be written to only once once written to the hardware does not allow the bit to be changed during program execution WDREN 1 WATCHDOG reset is enabled WDREN 0 WAT...

Page 15: ... Timer In this mode an 8 bit register is used to serve as an autoreload register MODRL a 50 Duty Cycle When MC1 is 1 and MC2 MC3 are 0 a 50 duty cycle free running signal is generated on the L7 output pin Figure 14 The L7 pin must be configured as an output pin In this mode the 8 bit counter is clocked by tC Setting the MC1 control bit by software loads the counter with the value of the autoreload...

Page 16: ... REGISTER r 4 INTERNAL DATA BUS k i k 7 6 5 f 0 AUTO RELOAD MC3 MC2 MC1 8 BIT 0 1 R Q S I ILK 8 BIT START STOP 1 IIDERTLCV CNTRL2 REGISTER TIMER Tt UNDERFLOW L7 PIN T L D D 11208 19 UNDERFLOW I I UNDERFLOW u 256 MAX CONTROLLED BY T1 FIGURE 15 Mode 2b Variable Duty Cycle Output T L D D 11208 20 1 65 COP820CJ COP822CJ COP823CJ ...

Page 17: ...rify this procedure Suppose we wish to change the edge select from positive low going high to negative high going low for L port bit 5 where bit 5 has previously been enabled for an input The program would be as follows RBIT 5 WKEN SBIT 5 WKEDG RBIT 5 WKPND SBIT 5 WKEN If the L port bits have been used as outputs and then changed to inputs with Multi Input Wakeup a safety proce dure should also be...

Page 18: ... onto the stack and the stack pointer SP is decremented twice The Global Interrupt Enable GIE bit is reset to disable further interrupts The microcontroller then vectors to the address 00FFH and resumes execution from that address This process takes 7 cycles to complete At the end of the interrupt subroutine any of the following three instructions return the processor back to the main pro gram RET...

Page 19: ...Y ENI GIE The Half Carry bit is also effected by all the instructions that effect the Carry flag The flag values depend upon the in struction For example after executing the ADC instruction the values of the Carry and the Half Carry flag depend upon the operands involved However instructions like SET C and RESET C will set and clear both the carry flags Table XIII lists the instructions that effec...

Page 20: ...the B or X pointer This is a register indirect mode that automati cally post increments or post decrements the B or X pointer after executing the instruction DIRECT The instruction contains an 8 bit address field that directly points to the data memory for the operand IMMEDIATE The instruction contains an 8 bit immediate field as the op erand SHORT IMMEDIATE This addressing mode issued with the LD...

Page 21: ...Set bit 1 to bit Mem bit 0 to 7 immediate RBIT Reset bit 0 to bit Mem IFBIT If bit If bit Mem is true do next instr X Exchange A with memory A Mem LD A Load A with memory A 4 Meml LD mem Load Direct memory Immed Mem 4 Imm LDReg Load Register memory Immed Reg Imm X Exchange A with memory B A B B B 1 X Exchange A with memory X A X X X 1 LD A Load A with memory B A B B B 1 LD A Load A with memory X A...

Page 22: ...1 71 COP820CJ COP822CJ COP823CJ ...

Page 23: ...1 3 4 2 2 OR 1 1 3 4 2 2 XOR 1 1 3 4 2 2 IFEQ 1 1 3 4 2 2 IFGT 1 1 3 4 2 2 IFBNE 1 1 DRSZ 1 3 SBIT 1 1 3 4 RBIT 1 1 3 4 IFBIT 1 1 3 4 Memory Transfer Instructions Bytes Cycles Register Indirect B X Direct Immed Register Indirect Auto Incr Deer B B X X XA 1 1 1 3 2 3 1 2 1 3 LD A 1 1 1 3 2 3 2 2 1 2 1 3 LD B lmm 1 1 LD B lmm 2 3 LD Mem lmm 3 3 2 2 LD Reg lmm 2 3 Memory location addressed by B or X ...

Page 24: ...direct address opcode value opcode class or im mediate operand Complex breakpoints can be ANDed and ORed together Trace information consists of address bus values opcodes and user selectable probe clips status ex ternal event lines The trace buffer can be viewed as raw hex or as disassembled instructions The probe clip bit val ues can be displayed in binary hex or digital waveform for mats During ...

Page 25: ...dering Information Assembler Ordering Information Part Number Package Voltage Range Emulates MH 820CJ20D5PC 20 DIP 4 5V 5 5V COP822CJ MHW 820CJ20DWPC 20 DIP 2 3V 6 0V COP822CJ MHW 820CJ28D5PC 28 DIP 4 5V 5 5V COP820CJ MHW 820CJ28DWPC 28 DIP 2 3V 6 0V COP820CJ Part Number Description Manual COP8 DEV IBMA COP8 Assembler Linker Librarian for IBM PC XT AT or compatible 424410632 001 MACRO CROSS ASSEMB...

Page 26: ... by the Microcontroller Applications Group The Dial A Helper is an Electronic Bul letin Board information system INFORMATION SYSTEM The Dial A Helper system provides access to an automated information storage and retrieval system that may be ac cessed over standard dial up telephone lines 24 hours a day The system capabilities include a MESSAGE SECTION electronic mail for communications to and fro...

Reviews: