background image

COP820CJ

/COP

822

CJ/C

OP8

23C

J

C o m p a ra to r

The  device  has  one  differential  comparator.  Ports  L0-L2 
are used for the  comparator. The output of the comparator 
is brought out to a pin. Port L has the following assignments: 

LO Comparator output 
L1  Comparator negative input 
L2 Comparator positive input

THE COMPARATOR STATUS/CONTROL BITS

These bits reside in the  CNTRL2  Register (Address OCC) 

CMPEN 

Enables comparator (“ 1”   =  enable)

CMPRD 

Reads comparator output internally

(CMPEN  =   1,  CMPOE =  X)

CMPOE 

Enables comparator output to pin  LO
("1" =  enable),  CMPEN  bit  must  be  set  to  en­
able this function.  If CMPEN =  0,  LO will be 0. 

The Comparator Select/Control bits are cleared on RESET 

(the  comparator  is  disabled).  To  save  power  the  program 
should also disable the comparator before the device enters 

the HALT mode.

The user program must set up LO,  L1  and L2 ports correctly 
for comparator Inputs/Output: L1  and  L2 need to be config­
ured as inputs and  LO as output.

M u lti-In p u t W a k e   Up

The  Multi-Input Wakeup feature  is used to  return  (wakeup) 
the device from the HALT mode. 

Figure  16

 shows the Multi- 

Input Wakeup  logic.

This feature utilizes the  L Port. The user selects which par­
ticular L port bit or combination of L Port bits will cause the 
device to exit the HALT mode. Three 8-bit memory mapped 
registers,  Reg:WKEN,  Reg:WKEDG,  and  Reg:WKPND  are 

used  in  conjunction with  the  L port to  implement the  Multi- 
Input Wakeup feature.

All 

three 

registers 

Reg:WKEN, 

Reg.WKPND, 

and 

Reg:WKEDG  are  read/write  registers,  and  are  cleared  at 
reset, except WKPND. WKPND is unknown on  reset.

The  user  can  select  whether  the  trigger  condition  on  the 
selected L Port pin is going to be either a positive edge (low 
to high transition) or a negative edge (high to low transition). 
This selection is made via the  Reg:WKEDG, which is an 8- 
bit  control  register  with  a  bit  assigned  to  each  L  Port  pin. 
Setting the control bit will select the trigger condition to be a 
negative edge on that particular L Port pin. Resetting the bit 
selects the trigger condition to be a positive edge. Changing 
an  edge  select  entails  several  steps  in  order  to  avoid  a 
pseudo Wakeup  condition  as  a  result of the  edge  change. 
First, the associated WKEN bit should be reset, followed by

the  edge  select  change  in  WKEDG.  Next,  the  associated 
WKPND  bit  should  be  cleared,  followed  by the  associated 
WKEN  bit being  re-enabled.

An  example  may  serve  to  clarify  this  procedure.  Suppose 
we wish to change the edge select from positive (low going 
high) to negative (high going low) for L port bit 5, where bit 5 
has  previously  been  enabled  for  an  input.  The  program 
would be as follows:

RBIT  5,WKEN 
SBIT  5,WKEDG 
RBIT  5,WKPND 

SBIT  5,WKEN

If  the  L  port  bits  have  been  used  as  outputs  and  then 

changed to inputs with  Multi-Input Wakeup,  a safety proce­
dure  should  also  be  followed  to  avoid  inherited  pseudo 
wakeup conditions. After the selected  L port bits have been 
changed  from  output  to  input  but  before  the  associated 
WKEN  bits are  enabled, the  associated  edge  select bits in 
WKEDG should be set or reset for the desired edge selects, 
followed by the associated WKPND bits being cleared. This 
same procedure should be used following RESET, since the 
L port inputs are left floating as a result of  RESET.

The occurrence of the selected trigger condition for Multi-In­

put  Wakeup  is  latched  into  a  pending  register  called 
Reg:WKPND.  The  respective  bits  of  the  WKPND  register 
will be set on the occurrence of the selected trigger edge on 

the corresponding Port L pin. The user has the responsibility 
of clearing these pending flags.  Since the  Reg:WKPND is a 

pending  register  for  the  occurrence  of  selected  wakeup 
conditions,  the  device will  not enter the  HALT mode  if any 

Wakeup  bit  is  both  enabled  and  pending.  Setting  the  G7 
data bit under this condition will  not allow the device to en­
ter the HALT mode. Consequently, the user has the respon­
sibility  of  clearing  the  pending  flags  before  attempting  to 
enter the  HALT mode.

If  a  crystal  oscillator  is  being  used,  the  Wakeup  signal  will 
not start the  chip  running  immediately since  crystal oscilla­

tors  have a finite start up time. The WATCHDOG timer pre­
scaler generates a fixed  delay to ensure  that  the  oscillator 

has indeed stabilized before allowing the  device to execute 
instructions.  In  this  case,  upon  detecting  a  valid  Wakeup 
signal only the oscillator circuitry and the WATCHDOG timer 
are  enabled.  The  WATCHDOG  timer  prescaler  is  loaded 

with a value of FF Hex (256 counts) and is clocked from the 
tc instruction cycle clock. The tc clock is derived by dividing 
down the oscillator clock by a factor of 10. A Schmitt trigger 
following the CKI on chip inverter ensures that the WATCH­
DOG  timer  is  clocked  only when  the  oscillator  has  a  suffi­
ciently  large  amplitude  to  meet  the  Schmitt  trigger  specs. 
This Schmitt trigger is not part of the oscillator closed  loop. 
The  startup  timeout  from  the  WATCHDOG  timer  enables 
the clock signals to  be routed to the rest of the  chip.

1-66

Summary of Contents for COP820CJ

Page 1: ...perating at a 1 jus per in struction rate Features Low cost 8 bit Microcontroller n Fully static CMOS n 1 jus instruction time Low current drain Low current static HALT mode Single supply operation 2 5V to 6 0V 1024 x 8 on chip ROM 64 bytes on chip RAM WATCHDOG Timer Comparator Modulator Timer High speed PWM Timer for IR Transmission Multi Input Wakeup on the 8 bit Port L Brown Out Protection 4 hi...

Page 2: ...5 mA CKI 4 MHz Vcc 4 0V tc 2 5 fis 2 0 mA CKI 1 MHz Vcc 4 0V tc 10 jxs 1 5 mA HALT Current with Brown Out Disbled Note 3 VCc 6V CKI 0 MHz 1 10 p A HALT Current with Brown Out Enabled VCc 6V CKI 0 MHz 50 110 juA BrownOut Trip Level 1 8 3 1 4 2 Brown Out Enabled INPUT LEVELS V H V l Reset CKI Logic High 0 8 VCC V Logic Low All Other Inputs 0 2 VCC V Logic High 0 7 VCC V Logic Low 0 2 VCC V Hi Z Inpu...

Page 3: ...low Vcc The effective resistance to Vcc is 750ft typical These two pins will not latch up The voltage at the pins must be limited to less than 14V AC Electrical Characteristics 40 C Ta 85 C unless otherwise specified Parameter Conditions Min Typ Max Units Instruction Cycle Time tc Crystal Resonator 4 5V Vcc 6 0V 1 DC JUS 2 5V VCc 4 5V 2 5 DC JUS R C Oscillator 4 5V VCc 6 0V 3 DC JUS 2 5V VCc 4 5V ...

Page 4: ...5 S K 2 27 G2 G 6 S I 3 26 G1 G 7 C K 0 4 25 G 0 IN T C K I 5 24 RESET w c r snrv CC wnw I0 7 22 D3 1 1 8 21 02 I 2 9 20 01 I 3 10 19 D O L0 C M P 0U T 11 18 L7 M0D0UT L1 CMPIN 12 17 L6 L2 CMPIN 13 16 L5 L3 14 15 L4 T L D D 11208 3 Top View Order Number COPCJ820 XXX N or COPCJ820 XXX WM G4 S0 1 20 G3 TI0 G 5 S K 2 19 G2 G6 SI 3 18 G1 07 C K0 4 17 C O IM T CKI 5 16 RESET vc c 6 15 GND L0 CMP0UT 7 1...

Page 5: ...COP820CJ COP822CJ COP823CJ 1 54 ...

Page 6: ... MIWU high sink current capability L6 MIWU high sink current capability L7 MIWU or MODOUT high sink current capability The selection of alternate Port L functions is done through registers WKEN 00C9 to enable MIWU and CNTRL2 OOCC to enable comparator and modulator All eight L pins have Schmitt Triggers on their inputs PORT G is an 8 bit port with 6 I O pins G0 G5 and 2 input pins G6 G7 All eight G...

Page 7: ...emory is addressed directly by the in struction or indirectly through B X and SP registers The device has 64 bytes of RAM Sixteen bytes of RAM are mapped as registers these can be loaded immediately decremented and tested Three specific registers X B and SP are mapped into this space the other registers are avail able for general usage Any bit of data memory can be directly set reset or tested All...

Page 8: ...a 256tc delay This delay allows the oscillator to stabilize before the device ex its the reset state The delay is not used if the clock option is either R C or external clock The contents of data registers and RAM are unknown following a Brown Out reset The external reset takes priority over Brown Out Reset and will deactivate the 256 tc cycles delay if in progress The Brown Out reset takes priori...

Page 9: ...ke a R C oscillator CKO is available as a general purpose input and or HALT control Table II shows variation in the oscilla tor frequencies as functions of the component R and C values Functional Description Continued TABLE I Crystal Oscillator Configuration R1 R2 C1 C2 CKI Freq Conditions kn Mft PF PF MHz 0 1 30 30 36 10 Vcc 5V 0 1 30 30 36 4 VCC 5V 5 6 1 100 100 156 0 455 in II o o TABLE II RC O...

Page 10: ... and freuqency stability The WATCHDOG timer consisting of an 8 bit prescaler followed by an 8 bit counter is used to gen erate a fixed delay of 256tc to ensure that the oscillator has indeed stabilized before allowing instruction execution In this case upon detecting a valid WAKEUP signal only the oscillator circuitry is enabled The WATCHDOG Counter and Prescaler are each loaded with a value of FF...

Page 11: ...here tc is the instruction cycle time MICROWIRE PLUS OPERATION Setting the BUSY bit in the PSW register causes the MI CROWIRE PLUS arrangement to start shifting the data It gets reset when eight data bits have been shifted The user may reset the BUSY bit by software to allow less than 8 bits to shift The device may enter the MICROWIRE PLUS mode either as a Master or as a Slave Figure 7 shows how t...

Page 12: ...tive edge Upon underflow the contents of the register R1 are automatically copied into the counter The underflow can also be programmed to generate an interrupt Figure 9 T im er C o u n ter The device has a powerful 16 bit timer with an associated 16 bit register enabling it to perform extensive timer func tions The timer T1 and its register R1 are each organized as two 8 bit read write registers ...

Page 13: ...ms The WATCHDOG can be en abled or disabled only once after the device is reset as a result of brown out reset or external reset On power up the WATCHDOG is disabled The WATCHDOG is enabled by writing a 1 to WDREN bit resides in WDREG register Once enabled the user program should write periodically into the 8 bit counter before the counter underflows The 8 bit counter WDCNT is memory mapped at add...

Page 14: ...he HALT mode It is a read only bit WDREN bit resides in a separate register bit 0 of WDREG This bit enables the WATCHDOG timer to generate a reset The bit is cleared upon Brown Out reset or external reset The bit under software control can be written to only once once written to the hardware does not allow the bit to be changed during program execution WDREN 1 WATCHDOG reset is enabled WDREN 0 WAT...

Page 15: ... Timer In this mode an 8 bit register is used to serve as an autoreload register MODRL a 50 Duty Cycle When MC1 is 1 and MC2 MC3 are 0 a 50 duty cycle free running signal is generated on the L7 output pin Figure 14 The L7 pin must be configured as an output pin In this mode the 8 bit counter is clocked by tC Setting the MC1 control bit by software loads the counter with the value of the autoreload...

Page 16: ... REGISTER r 4 INTERNAL DATA BUS k i k 7 6 5 f 0 AUTO RELOAD MC3 MC2 MC1 8 BIT 0 1 R Q S I ILK 8 BIT START STOP 1 IIDERTLCV CNTRL2 REGISTER TIMER Tt UNDERFLOW L7 PIN T L D D 11208 19 UNDERFLOW I I UNDERFLOW u 256 MAX CONTROLLED BY T1 FIGURE 15 Mode 2b Variable Duty Cycle Output T L D D 11208 20 1 65 COP820CJ COP822CJ COP823CJ ...

Page 17: ...rify this procedure Suppose we wish to change the edge select from positive low going high to negative high going low for L port bit 5 where bit 5 has previously been enabled for an input The program would be as follows RBIT 5 WKEN SBIT 5 WKEDG RBIT 5 WKPND SBIT 5 WKEN If the L port bits have been used as outputs and then changed to inputs with Multi Input Wakeup a safety proce dure should also be...

Page 18: ... onto the stack and the stack pointer SP is decremented twice The Global Interrupt Enable GIE bit is reset to disable further interrupts The microcontroller then vectors to the address 00FFH and resumes execution from that address This process takes 7 cycles to complete At the end of the interrupt subroutine any of the following three instructions return the processor back to the main pro gram RET...

Page 19: ...Y ENI GIE The Half Carry bit is also effected by all the instructions that effect the Carry flag The flag values depend upon the in struction For example after executing the ADC instruction the values of the Carry and the Half Carry flag depend upon the operands involved However instructions like SET C and RESET C will set and clear both the carry flags Table XIII lists the instructions that effec...

Page 20: ...the B or X pointer This is a register indirect mode that automati cally post increments or post decrements the B or X pointer after executing the instruction DIRECT The instruction contains an 8 bit address field that directly points to the data memory for the operand IMMEDIATE The instruction contains an 8 bit immediate field as the op erand SHORT IMMEDIATE This addressing mode issued with the LD...

Page 21: ...Set bit 1 to bit Mem bit 0 to 7 immediate RBIT Reset bit 0 to bit Mem IFBIT If bit If bit Mem is true do next instr X Exchange A with memory A Mem LD A Load A with memory A 4 Meml LD mem Load Direct memory Immed Mem 4 Imm LDReg Load Register memory Immed Reg Imm X Exchange A with memory B A B B B 1 X Exchange A with memory X A X X X 1 LD A Load A with memory B A B B B 1 LD A Load A with memory X A...

Page 22: ...1 71 COP820CJ COP822CJ COP823CJ ...

Page 23: ...1 3 4 2 2 OR 1 1 3 4 2 2 XOR 1 1 3 4 2 2 IFEQ 1 1 3 4 2 2 IFGT 1 1 3 4 2 2 IFBNE 1 1 DRSZ 1 3 SBIT 1 1 3 4 RBIT 1 1 3 4 IFBIT 1 1 3 4 Memory Transfer Instructions Bytes Cycles Register Indirect B X Direct Immed Register Indirect Auto Incr Deer B B X X XA 1 1 1 3 2 3 1 2 1 3 LD A 1 1 1 3 2 3 2 2 1 2 1 3 LD B lmm 1 1 LD B lmm 2 3 LD Mem lmm 3 3 2 2 LD Reg lmm 2 3 Memory location addressed by B or X ...

Page 24: ...direct address opcode value opcode class or im mediate operand Complex breakpoints can be ANDed and ORed together Trace information consists of address bus values opcodes and user selectable probe clips status ex ternal event lines The trace buffer can be viewed as raw hex or as disassembled instructions The probe clip bit val ues can be displayed in binary hex or digital waveform for mats During ...

Page 25: ...dering Information Assembler Ordering Information Part Number Package Voltage Range Emulates MH 820CJ20D5PC 20 DIP 4 5V 5 5V COP822CJ MHW 820CJ20DWPC 20 DIP 2 3V 6 0V COP822CJ MHW 820CJ28D5PC 28 DIP 4 5V 5 5V COP820CJ MHW 820CJ28DWPC 28 DIP 2 3V 6 0V COP820CJ Part Number Description Manual COP8 DEV IBMA COP8 Assembler Linker Librarian for IBM PC XT AT or compatible 424410632 001 MACRO CROSS ASSEMB...

Page 26: ... by the Microcontroller Applications Group The Dial A Helper is an Electronic Bul letin Board information system INFORMATION SYSTEM The Dial A Helper system provides access to an automated information storage and retrieval system that may be ac cessed over standard dial up telephone lines 24 hours a day The system capabilities include a MESSAGE SECTION electronic mail for communications to and fro...

Reviews: