Hameg HM304 Manual Download Page 9

9

Subject to change without notice

Displayed wavelength L = 0.8div.,
set time coefficient Tc = 0.5µs/div.,
pressed X-MAG. (x10) button: Tc = 0.05µs/div.,
required rec. freq. F = 1:(0.8x0.05x10

-6

) = 25MHz,

required period T = 1:(25x10

6

) = 40ns.

If the time is relatively short as compared with the complete
signal period, an expanded time scale should always be
applied (X-MAG. (x10) active). In this case, the ascertained
time values have to be divided by 10. The time interval of
interest can be shifted to the screen center using the X-POS.
control.

When investigating pulse or square waveforms, the critical
feature is the risetime of the voltage step. To ensure that
transients, ramp-offs, and bandwidth limits do not unduly
influence the measuring accuracy, the risetime is generally
measured between 10% and 90% of the vertical pulse height.
For measurement, adjust the Y deflection coefficient with
its variable control together with the Y-POS. control so that
the pulse height is precisely aligned with the 0% and 100%
lines of the internal graticule. The 10% and 90% points of
the signal will now coincide with the 10% and 90% graticule
lines. The risetime is given by the product of the horizontal
distance in div. between these two coincident points and the
time coefficient setting. If X x10 magnification is used, this
product must be divided by 10. The fall time of a pulse can
also be measured by using this method.

The following figure shows correct positioning of the
oscilloscope trace for accurate risetime measurement.

With a time coefficient of 0.2µs/div. and X x10 magnification,
the example shown in the above figure results in a total
measured risetime of

t

tot

 = 1.6div x 0.2µs/div. : 10 = 

32ns

When very fast risetimes are being measured, the risetimes
of the oscilloscope amplifier and of the attenuator probe has
to be deducted from the measured time value. The risetime
of the signal can be calculated using the following formula.

In this t

tot

 is the total measured risetime, t

osc

 is the risetime

of the oscilloscope amplifier (approx. 12ns), and t

p

 the risetime

of the probe (e.g. = 2ns). If ttot is greater than 100ns, then
t

tot

 can be taken as the risetime of the pulse, and calculation

is unnecessary.

Calculation of the example in the figure above results in a
signal risetime

The measurement of the rise or fall time is not limited to the
trace dimensions shown in the above diagram. It is only

particularly simple in this way. In principle it is possible to
measure in any display position and at any signal amplitude.
It is only important that the full height of the signal edge of
interest is visible in its full length at not too great steepness
and that the horizontal distance at 10% and 90% of the
amplitude is measured. If the edge shows rounding or
overshooting, the 100% should not be related to the peak
values but to the mean pulse heights. Breaks or peaks
(glitches) next to the edge are also not taken into account.
With very severe transient distortions, the rise and fall time
measurement has little meaning. For amplifiers with
approximately constant group delay (therefore good pulse
transmission performance) the following numerical
relationship between rise time

 tr (in ns)

 and bandwidth 

B

(in MHz)

 applies:

Connection of Test Signal

Caution! When connecting unknown signals to the
oscilloscope input, always use automatic triggering
and set the DC-AC input coupling switch to AC (DC
not lit). The attenuator should initially be set to 20V/
div.

Sometimes the trace will disappear after an input signal has
been applied. The attenuator must be switched to a higher
deflection coefficient by pressing the left (

<

) arrow pushbutton

in the VOLTS/DIV. section constantly or step by step, until
the vertical signal height is only 3-8div. With a signal amplitude
greater than 160Vpp, an attenuator probe must be inserted
before the vertical input. If, after applying the signal, the trace
is nearly blanked, the period of the signal is probably
substantially longer than the set value on the 

TIME/DIV.

 scale.

It should be switched to an adequately larger time coefficient
by pressing the left (

<

) arrow pushbutton in the 

TIME/DIV

section by pressing it constantly or step by step. In most
cases the easiest way to adapt the instruments settings to
the input signal is to depress the 

AUTO SET

 pushbutton for

automatic instrument settings.

The signal to be displayed can be connected directly to the Y-
input of the oscilloscope with a shielded test cable such as
HZ32 or HZ34, or reduced through a x10 or x100 attenuator
probe. The use of test cables with high impedance circuits is
only recommended for relatively low frequencies (up to
approx. 50kHz). For higher frequencies, the signal source
must be of low impedance, i.e. matched to the characteristic
resistance of the cable (as a rule 50

). Especially when

transmitting square and pulse signals, a resistor equal to the
characteristic impedance of the cable must also be connected
across the cable directly at the Y-input of the oscilloscope.
When using a 50

 cable such as the HZ34, a 50

 through

termination type HZ22 is available from HAMEG. When
transmitting square signals with short rise times, transient
phenomena on the edges and top of the signal may become
visible if the correct termination is not used. A terminating
resistance is sometimes recommended with sine signals as
well. Certain amplifiers, generators or their attenuators
maintain the nominal output voltage independent of frequency
only if their connection cable is terminated with the prescribed
resistance. Here it must be noted that the terminating resistor
HZ22 will only dissipate a maximum of 2Watts. This power
is reached with 10Vrms or  at 28.3Vpp with sine signal.

If a x10 or x100 attenuator probe is used, no termination is
necessary. In this case, the connecting cable is matched
directly to the high impedance input of the oscilloscope. When
using attenuators probes, even high internal impedance

= √

= √

=

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary of Contents for HM304

Page 1: ...tructions General Information 5 Symbols 5 Use of tilt handle 5 Safety 5 Operating conditions 5 EMC 6 Warranty 6 Maintenance 6 Protective Switch Off 6 Power supply 6 Type of signal voltage 7 Amplitude...

Page 2: ...uction in the manual for a reduced cable length the maximum cable length of a dataline must be less than 3 meters long If an interface has several connectors only one connector must have a connection...

Page 3: ...nzt durch 93 68 EWG Low Voltage Equipment Directive 73 23 EEC amended by 93 68 EEC Directive des equipements basse tension 73 23 CEE amend e par 93 68 CEE Angewendete harmonisierte Normen Harmonized...

Page 4: ...35MHz 3dB Risetime 10ns Overshoot max 1 Deflection coefficients 14 calibrated steps from1mV div to20V div 1 2 5 sequence with variable 2 5 1 up to 50V div Accuracy in calibrated position 1mV div to 2m...

Page 5: ...three conductor power cord with protective earthing conductor and a plug with earthing contact The mains line plug shall only be inserted in a socket outlet provided with a protective earth contact T...

Page 6: ...aintenance Various important properties of the oscilloscope should be carefully checked at certain intervals Only in this way is it largely certain that all signals are displayed with the accuracy on...

Page 7: ...ms Veff have 2 83 times the potential difference in Vpp The relationship between the different voltage magnitudes can be seen from the following figure Voltage values of a sine curve Vrms effective va...

Page 8: ...e base setting indicated by one of the TIME DIV LED s one or several signal periods or only a part of a period can be displayed The time coefficients are stated in s div when the red sec LED and the 0...

Page 9: ...hes next to the edge are also not taken into account With very severe transient distortions the rise and fall time measurement has little meaning For amplifiers with approximately constant group delay...

Page 10: ...oscilloscope by depressing the red POWER pushbutton The instrument will revert to its last used operating mode Except in the case of COMP TESTER mode where a trace appears on the screen if the INTENS...

Page 11: ...should be adjusted The location of the low frequency compensation trimmer can be found in the probe information sheet Adjust the trimmer with the insulated screw driver provided until the tops of the...

Page 12: ...channell I to channel II and vice versa after each sweep period In DUAL mode the internal trigger source can be switched over from channel I to channel II and vice versa if the TRIG pushbutton is dep...

Page 13: ...compared with C short circuited then the test voltage leads the reference voltage and vice versa This applies only in the region up to 90 phase shift Therefore C should be sufficiently large and produ...

Page 14: ...t when external trigger is used the trigger threshold can be stated as vertical display height in div through which the time base generator starts the display is stable and the trigger LED located in...

Page 15: ...gnals than the DC coupling because the white noise in the trigger voltage is strongly suppressed So jitter or double triggering of complex signals is avoidable or at least reduced in particular with v...

Page 16: ...er voltage may have a completely different form from the test signal voltage Triggering is even possible in certain limits with whole number multiples or fractions of the test frequency but only with...

Page 17: ...following explanation assumes that the trace starts on the left vertical graticule line Photo 1 composite video signal MODE undelayed TIME DIV 5ms div Trigger coupling TV F Trigger slope falling Depre...

Page 18: ...ted in Dual mode under conditions where DUAL chopped mode is active this display mode is not switched off when time coefficients are being reduced 0 2ms div to 0 05 s div for signal expansion in DEL a...

Page 19: ...also be made to integrated circuits All these components can be tested in and out of circuit The test principle is fascinatingly simple A built in generator delivers a sine voltage which is applied a...

Page 20: ...ore testing of transistor amplification is not possible but testing of a single junction is easily and quickly possible Since the test voltage applied is only very low all sections of most semiconduct...

Page 21: ...ould then be connected to the insulated COMP TESTER socket avoiding hum distortion of the test pattern Another way is a test pattern comparison to an identical circuit which is known to be operational...

Page 22: ...Subject to change without notice 22...

Page 23: ...of astigmatism A certain loss of marginal sharpness of the CRT is unavoidable this is due to the manufacturing process of the CRT Symmetry and Drift of the Vertical Amplifier Both of these characteri...

Page 24: ...eck of the mono channel display is unnecessary it is contained indirectly in the tests above stated Triggering Checks The internal trigger threshold is important as it determines the display height fr...

Page 25: ...and also the influence of the earths magnetic field which is dependent on the instruments North orientation are corrected by means of the TR potentiometer In general the trace rotation range is asymme...

Page 26: ...hanged Generally max halving or doubling of this resistance value should be sufficient A too small trigger threshold cause double triggering or premature trigger action due to interference pulses or r...

Page 27: ...R ckgabe Beschreibung PC Scope Scope PC ID ID Daten CR LF data consits of instrument type manufacturer CR R CR LF remote status and baud rate acceptance TRSTA TRSTA b CR LF query for trigger status d...

Page 28: ...nter 0 13 CH2 GND AC INV2 ON VALUE Counter 0 13 mv DIV 0000 20V DIV 1101 MODE CT XY A TR CHOP ADD 0 TR SOURCE 00 Y1 01 Y2 1x EXT TB1 x10 0 0 TB A TIME Counter 1 26 50ns DIV 00 bis 0 5s DIV 15hex TB2 0...

Page 29: ...cy ranges AC 10Hz 100MHz DC 0Hz 100MHz HF 1 5kHz 100MHz LF 0Hz 1 5 kHz TV L to trigger on line sync pulses TV F to trigger on separated frame sync pulses Select SLOPE for the leading slope Sync pulse...

Page 30: ...control for trace sharpness mechanical knob TR Trace rotation mechanical To align trace with horzontal field potentiometer graticule line Compensates adjustment with influence of Earth s magnetic scr...

Page 31: ...triggering Not available in combination with ext triggering XY or COMP TESTER modes INPUT CH II Channel II signal input BNC connector Input impedance 1M II 20pF AC DC Selects input coupling of CH II...

Reviews: