Chapter 5: Tactile Navigation with Whiskers
· Page 165
Chapter 5: Tactile Navigation with Whiskers
Many types of robotic machinery rely on a variety of tactile switches. For example, a
tactile switch may detect when a robotic arm has encountered an object. The robot can
be programmed to pick up the object and place it elsewhere. Factories use tactile
switches to count objects on a production line, and also for aligning objects during
industrial processes. In all these instances, the switches provide inputs that dictate some
other form of programmed output. The inputs are electronically monitored by the
product, be it a robot, or a calculator, or a production line. Based on the state of the
switches, the robot arm grabs an object, or the calculator display updates, or the factory
production line reacts with motors or servos to guide products.
In this chapter, you will build tactile switches, called whiskers, onto your Boe-Bot and
test them. You will then program the Boe-Bot to monitor the state of these switches, and
to decide what to do when it encounters an obstacle. The end result will be autonomous
navigation by touch.
TACTILE NAVIGATION
The whiskers are so named because that is what these bumper switches look like, though
some argue they look more like antennae. At any rate, these whiskers are shown
mounted on a Boe-Bot in Figure 5-1. Whiskers give the Boe-Bot the ability to sense the
world around it through touch, much like the antennae on an ant or the whiskers on a cat.
The activities in this chapter use the whiskers by themselves, but they can also be
combined with other sensors you will learn about in later chapters to increase your Boe-
Bot’s functionality.