Optidrive E2 Single Phase Output User Guide V3.10
13
www.invertekdrives.com
Pow
e
r
W
ir
in
g
4
4.3.
Incoming Power Connection
Power should be connected to the L1/L, L2/N terminals.
For compliance with CE and C Tick EMC requirements, a symmetrical shielded cable is recommended.
A fixed installation is required according to IEC61800-5-1 with a suitable disconnecting device installed between the Optidrive and
the AC Power Source. The disconnecting device must conform to the local safety code / regulations (e.g. within Europe, EN60204-1,
Safety of machinery).
The cables should be dimensioned according to any local codes or regulations. Guideline dimensions are given in section 9.2.
Suitable fuses to provide wiring protection of the input power cable should be installed in the incoming supply line, according to the
data in section 9.2. The fuses must comply with any local codes or regulations in place. In general, type gG (IEC 60269) or UL type T
fuses are suitable; however in some cases type aR fuses may be required. The operating time of the fuses must be below 0.5
seconds.
Where allowed by local regulations, suitably dimensioned type B MCB circuit breakers of equivalent rating may be utilised in place of
fuses, providing that the clearing capacity is sufficient for the installation.
When the power supply is removed from the drive, a minimum of 30 seconds should be allowed before re-applying the power. A
minimum of 5 minutes should be allowed before removing the terminal covers or connection.
The maximum permissible short circuit current at the Optidrive Power terminals as defined in IEC60439-1 is 5kA.
An optional Input Choke is recommended to be installed in the supply line for drives where any of the following conditions occur:-
o
The incoming supply impedance is low or the fault level / short circuit current is high
o
The supply is prone to dips or brown outs
o
The power supply to the drive is via a busbar and brush gear system (typically overhead Cranes).
In all other installations, an input choke is recommended to ensure protection of the drive against power supply faults. Part numbers
are shown in the table.
Supply
Frame Size
AC Input Inductor
230 Volt
1 Phase
1
OPT-2-L1016-20
2
OPT-2-L1025-20
4.4.
Drive and Motor Connection
The drive inherently produces fast switching of the output voltage (PWM) to the motor compared to the mains supply, for motors
which have been wound for operation with a variable speed drive then there is no preventative measures required, however if the
quality of insulation is unknown then the motor manufacturer should be consulted and preventative measures may be required.
The motor should be connected to the Optidrive U, and V terminals using a suitable 2 or 3 core cable. Where a 2 core cable is
utilised, with the shield operating as an earth conductor, the shield must have a cross sectional area at least equal to the phase
conductors when they are made from the same material. Where a 3 core cable is utilised, the earth conductor must be of at least
equal cross sectional area and manufactured from the same material as the phase conductors.
The motor earth must be connected to one of the Optidrive earth terminals.
For compliance with the European EMC directive, a suitable screened (shielded) cable should be used. Braided or twisted type
screened cable where the screen covers at least 85% of the cable surface area, designed with low impedance to HF signals are
recommended as a minimum. Installation within a suitable steel or copper tube is generally also acceptable.
The cable screen should be terminated at the motor end using an EMC type gland allowing connection to the motor body through
the largest possible surface area
Where drives are mounted in a steel control panel enclosure, the cable screen may be terminated directly to the control panel using
a suitable EMC clamp or gland, as close to the drive as possible.
For IP66 drives, connect the motor cable screen to the internal ground clamp
4.5.
Motor Thermal overload Protection.
4.5.1.
Internal Thermal Overload Protection.
The drive has an in-built motor thermal overload function; this is in the form of an “I.t-trP” trip after delivering >100% of the value set in P-08
for a sustained period of time (e.g. 150% for 60 seconds).
4.5.2.
Motor Thermistor Connection
Where a motor thermistor is to be used, it should be connected as follows :-
Additional Information
Compatible Thermistor : PTC Type, 2.5kΩ trip level
Use a setting of P-15 that has Input 3 function as External Trip, e.g. P-15 =
3. Refer to section 7 for further details.
4.6.
Control Terminal Wiring
All analog signal cables should be suitably shielded. Twisted pair cables are recommended.
Power and Control Signal cables should be routed separately where possible, and must not be routed parallel to each other.
Signal levels of different voltages e.g. 24 Volt DC and 110 Volt AC, should not be routed in the same cable.
Maximum control terminal tightening torque is 0.5Nm.
Control Cable entry conductor size: 0.05 – 2.5mm
2
/ 30 – 12 AWG.