Heatsink Clip Load Metrology
Thermal and Mechanical Design Guidelines
81
B.3.1
Time-Zero, Room Temperature Preload
Measurement
1.
Pre-assemble mechanical components on the board as needed prior to mounting
the motherboard on an appropriate support fixture that replicate the board attach
to a target chassis
For example: standard ATX board should sit on ATX compliant stand-offs. If the
attach mechanism includes fixtures on the back side of the board, those must be
included, as the goal of the test is to measure the load provided by the actual
heatsink mechanism.
2.
Install relevant test vehicle (TTV, processor) in the socket
3.
Assemble the heatsink reworked with the load cells to motherboard as shown for
the reference design example in Figure
7-10, and actuate attach mechanism.
4.
Collect continuous load cell data at 1 Hz for the duration of the test. A minimum
time to allow the load cell to settle is generally specified by the load vendors
(often of order of 3 minutes). The time zero reading should be taken at the end of
this settling time.
5.
Record the preload measurement (total from all three load cells) at the target time
and average the values over 10 seconds around this target time as well, i.e. in the
interval , for example over [target time – 5 seconds ; target time + 5 seconds].
B.3.2
Preload Degradation under Bake Conditions
This section describes an example of testing for potential clip load degradation under
bake conditions.
1.
Preheat thermal chamber to target temperature (45 ºC or 85 ºC for example)
2.
Repeat time-zero, room temperature preload measurement
3.
Place unit into preheated thermal chamber for specified time
4.
Record continuous load cell data as follows:
Sample rate = 0.1 Hz for first 3 hrs
Sample rate = 0.01 Hz for the remainder of the bake test
5.
Remove assembly from thermal chamber and set into room temperature
conditions
6.
Record continuous load cell data for next 30 minutes at sample rate of 1 Hz.
§
Содержание BX80570E8200 - Core 2 Duo 2.66 GHz Processor
Страница 10: ...10 Thermal and Mechanical Design Guidelines...
Страница 26: ...Processor Thermal Mechanical Information 26 Thermal and Mechanical Design Guidelines...
Страница 82: ...Heatsink Clip Load Metrology 82 Thermal and Mechanical Design Guidelines...
Страница 84: ...Thermal Interface Management 84 Thermal and Mechanical Design Guidelines...
Страница 108: ...Balanced Technology Extended BTX System Thermal Considerations 108 Thermal and Mechanical Design Guidelines...
Страница 110: ...Fan Performance for Reference Design 110 Thermal and Mechanical Design Guidelines...
Страница 122: ...Mechanical Drawings 122 Thermal and Mechanical Design Guidelines Figure 7 50 Reference Fastener Sheet 1...
Страница 123: ...Mechanical Drawings Thermal and Mechanical Design Guidelines 123 Figure 7 51 Reference Fastener Sheet 2...
Страница 124: ...Mechanical Drawings 124 Thermal and Mechanical Design Guidelines Figure 7 52 Reference Fastener Sheet 3...
Страница 125: ...Mechanical Drawings Thermal and Mechanical Design Guidelines 125 Figure 7 53 Reference Fastener Sheet 4...