CLOCK GENERATION AND POWER MANAGEMENT
5-6
An important consideration when using crystals is that the oscillator start correctly over the volt-
age and temperature ranges expected in operation. Observe oscillator startup in the laboratory.
Varying the load capacitors (within about ± 50%) can optimize startup characteristics versus sta-
bility. In your experiments, consider stray capacitance and scope loading effects.
For help in selecting external oscillator components for unusual circumstances, count on the crys-
tal manufacturer as your best resource. Using low-cost ceramic resonators in place of crystals is
possible if your application will tolerate less precise frequencies.
5.1.2
Using an External Oscillator
The microprocessor’s on-board clock oscillator allows the use of a relatively low cost crystal.
However, the designer may also use a “canned oscillator” or other external frequency source.
Connect the external frequency input (EFI) signal directly to the oscillator X1 input. Leave X2
unconnected. This oscillator input drives the internal divide-by-two counter directly, generating
the CPU clock signals. The external frequency input can have practically any duty cycle, provid-
ed it meets the minimum high and low times stated in the data sheet. Selecting an external clock
oscillator is more straightforward than selecting a crystal.
5.1.3
Output from the Clock Generator
The crystal oscillator output drives a divide-by-two circuit, generating a 50% duty cycle clock for
the processor’s integrated components. All processor timings refer to this clock, available exter-
nally at the CLKOUT pin. CLKOUT changes state on the high-to-low transition of the X1 signal,
even during reset and bus hold.
In a CMOS circuit, significant current flows only during logic level transitions. Since the micro-
processor consists mostly of clocked circuitry, the clock distribution is the basis of power man-
agement.
5.1.4
Reset and Clock Synchronization
The clock generator provides a system reset signal (RESET). The RES input generates RESET
and the clock generator synchronizes it to the CLKOUT signal.
A Schmitt trigger in the RES input ensures that the switch point for a low-to-high transition is
greater than the switch point for a high-to-low transition. The processor must remain in reset a
minimum of 4 CLKOUT cycles after V
CC
and CLKOUT stabilize. The hysteresis allows a simple
RC circuit to drive the RES input (see Figure 5-5). Typical applications can use about 100 milli-
seconds as an RC time constant.
Содержание 80C186XL
Страница 1: ...80C186XL 80C188XL Microprocessor User s Manual...
Страница 2: ...80C186XL 80C188XL Microprocessor User s Manual 1995...
Страница 18: ...1 Introduction...
Страница 19: ......
Страница 27: ......
Страница 28: ...2 Overview of the 80C186 Family Architecture...
Страница 29: ......
Страница 79: ......
Страница 80: ...3 Bus Interface Unit...
Страница 81: ......
Страница 127: ......
Страница 128: ...4 Peripheral Control Block...
Страница 129: ......
Страница 137: ......
Страница 138: ...5 ClockGenerationand Power Management...
Страница 139: ......
Страница 154: ...6 Chip Select Unit...
Страница 155: ......
Страница 178: ...7 Refresh Control Unit...
Страница 179: ......
Страница 193: ......
Страница 194: ...8 Interrupt Control Unit...
Страница 195: ......
Страница 227: ......
Страница 228: ...9 Timer Counter Unit...
Страница 229: ......
Страница 253: ......
Страница 254: ...10 Direct Memory Access Unit...
Страница 255: ......
Страница 283: ......
Страница 284: ...11 Math Coprocessing...
Страница 285: ......
Страница 302: ...12 ONCE Mode...
Страница 303: ......
Страница 306: ...A 80C186 Instruction Set Additions and Extensions...
Страница 307: ......
Страница 318: ...B Input Synchronization...
Страница 319: ......
Страница 322: ...C Instruction Set Descriptions...
Страница 323: ......
Страница 371: ......
Страница 372: ...D Instruction Set Opcodes and Clock Cycles...
Страница 373: ......
Страница 396: ...Index...
Страница 397: ......